
Chapter 5

Asymptotic-Preserving Schemes
for Multiscale Hyperbolic
and Kinetic Equations

J. Hu*, S. Jin† and Q. Li†
*Purdue University, West Lafayette, IN, United States
†University of Wisconsin-Madison, Madison, WI, United States

Chapter Outline
1 Introduction 104

2 Basic Design Principles of AP

Schemes—Two Illustrative

Examples 105

2.1 The Jin–Xin Relaxation

Model 105

2.2 The BGK Model 107

3 AP Schemes for General

Hyperbolic and Kinetic

Equations 110

3.1 AP Schemes Based on

Penalization 111

3.2 AP Schemes Based

on Exponential

Reformulation 115

3.3 AP Schemes Based on Micro–

Macro Decomposition 117

4 Other Asymptotic Limits and

AP Schemes 118

4.1 Diffusion Limit of

Linear Transport Equation 118

4.2 High-Field Limit 119

4.3 Quasi-Neutral Limit in

Plasmas 120

4.4 Low Mach Number Limit

of Compressible Flows 121

4.5 Stochastic AP Schemes 122

5 Conclusion 123

Acknowledgements 123

References 124

ABSTRACT
Hyperbolic and kinetic equations often possess small spatial and temporal scales that

lead to various asymptotic limits. Numerical approximation of these equations is chal-

lenging due to the presence of stiff source, collision, forcing terms, or when different

scales coexist. Asymptotic-preserving (AP) schemes are numerical methods that are

efficient in these asymptotic regimes. They are designed to capture the asymptotic limit

at the discrete level without resolving small scales. This chapter aims to review the cur-

rent status of AP schemes for a large class of hyperbolic and kinetic equations. We will

first use simple models to illustrate the basic design principles, and then describe sev-

eral generic AP strategies for handling general equations. Various aspects of the AP
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schemes for different asymptotic regimes, including some recent development, will be

discussed as well.

Keywords: Asymptotic-preserving, Hyperbolic equations, Kinetic equations, Multi-

scale, Stiff relaxations

AMS Classification Codes: 35L02, 82B40, 65L04, 58J37

1 INTRODUCTION

Hyperbolic and kinetic equations usually possess multiple or small spatial and

temporal scales that pose tremendous numerical challenges. These scales arise

very often from (possibly stiff) source terms, collision terms, strong forcing,

etc., and a naive numerical discretization of these equations requires the mesh

sizes and time steps smaller than the smallest scales of the problem which is

often prohibitively expensive.

Typically, to efficiently compute problems with multiple scales one often

couples a macroscopic model with a microscopic one through coupling condi-

tions. One classical example is the coupling of the (microscopic) Boltzmann

equation with the (macroscopic) fluid dynamic equations (Bourgat et al.,

1994; Tiwari and Klar, 1998; Weinan and Engquist, 2003). Such technique

requires an interface or connection condition which transfers data between

the macroscopic and the microscopic ones (Li et al., 2015). This can be very

difficult and is often ad hoc. Another paradigm that has been very popular in

the last two decades is the so-called Asymptotic-Preserving (AP) schemes

(Jin, 1999) that bridge the two different scales in a seamless way: the transi-

tion between the two scales is realized automatically, in that a microsolver

becomes a macrosolver automatically if the numerical discretizations do not

resolve the physically small scales. A requirement for AP schemes is to pre-
serve the asymptotic transition from the micro models to the macro ones at the
discrete level, which can be best illustrated in Fig. 1. Such an AP property
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FIG. 1 Illustration of AP schemes. Pe is a microscopic equation that depends on the small scale

e (e.g. the Boltzmann equation with the small Knudsen number (ratio of the mean free path over

the characteristic length)), and P0 is its macroscopic limit as e! 0 (e.g. the Euler equations).

Denote the numerical approximation of Pe by Pe
h, where h is the discretization parameter such

as the time step or mesh size. The asymptotic limit of Pe
h as e! 0 (with h fixed), if exists, is

denoted by P0
h. If P0

h is a good (consistent and stable) approximation of P0, then the scheme

Pe
h is called AP.
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often leads to a uniform convergence in the scaling parameter (Golse et al.,

1999; Jin, 2012). This chapter aims at introducing this framework and reviewing

the current status of AP schemes for a large class of hyperbolic and kinetic equa-

tions, in various asymptotic regimes. Interested readers may also consult earlier

reviews in this subject (Degond, 2013; Degond and Deluzet, 2016; Jin, 2012).

The rest of this chapter is organized as follows. We will first use two sim-

ple models to illustrate the basic design principles of AP schemes in

Section 2. Then in Section 3, using the nonlinear Boltzmann equation as an

example, we discuss several generic AP strategies for handling general kinetic

and hyperbolic equations. Section 4 summarizes some other asymptotic limits

and the corresponding AP schemes. The chapter is concluded in Section 5.

2 BASIC DESIGN PRINCIPLES OF AP SCHEMES—TWO
ILLUSTRATIVE EXAMPLES

While earlier attempts of AP schemes aim at stationary neutron transport in

the diffusive regime (Larsen and Morel, 1989; Larsen et al., 1987), the major

challenges—and the most recent developments—in the design of AP schemes

come from time discretizations (Caflisch et al., 1997; Jin, 1995) or reformula-

tion to a system that is insensitive to the specific spatial discretizations. As

described in Jin (1999), a scheme is AP if

l it is a good discretization of the microscopic model; when the scaling

parameter approaches zero, with numerical parameters fixed, it becomes

a good macroscopic solver;

l an implicit discretization, which is necessary for uniform stability, can be

implemented either explicitly or at least very efficiently (avoiding difficult

nonlinear iterative algebraic solvers for instance).

We will first use two simple examples to illustrate the basic design principles

of AP schemes. The first one is the Jin–Xin hyperbolic relaxation system pro-

posed initially to solve the systems of conservation laws (Jin and Xin, 1995).

The second one is the Bhatnagar–Gross–Krook (BGK) model which is a

kinetic equation introduced to simplify the complicated Boltzmann collision

integral in rarefied gas dynamics (Bhatnagar et al., 1954).

2.1 The Jin–Xin Relaxation Model

The Jin–Xin semilinear hyperbolic relaxation model in one spatial dimension

reads as

@tu+ @xv¼ 0,

@tv+ a@xu¼ 1

e
ð f ðuÞ� vÞ,

(
(1)

where a is a constant, f(u) is a nonlinear function of u and e is the relaxa-

tion time. As e! 0, the second equation above yields the local equilibrium
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v ¼ f(u), which, upon substitution to the first equation, gives the zero

relaxation limit:

@tu + @x f ðuÞ¼ 0: (2)

When e is small but not zero, numerically approximating the system (1)

presents a challenge due to the stiff relaxation term. A naive explicit scheme

would require the time step to resolve e: Dt ¼ O(e), which can be very time-

consuming. A natural way is to treat this term implicitly which allows Dt ≫ e.
The convection term, on the other hand, can be treated explicitly as it is not

stiff. Leaving aside the spatial discretization, one can employ the following

first-order time-splitting framework to solve (1):

u� �un

Dt
¼ 0,

v� � vn

Dt
¼ 1

e
ð f ðu�Þ� v�Þ,

8><
>: ðrelaxation stepÞ (3)

un+ 1�u�

Dt
+ @xv

� ¼ 0,

vn + 1� v�

Dt
+ a@xu

� ¼ 0:

8>><
>>: ðconvection stepÞ (4)

The second equation in (3) appears implicit at first sight, but note that from

the first equation u� ¼ un, so the nonlinear term f(u�) is indeed explicit thus

requires no Newton-type iterations. Therefore, although implicit, the whole

scheme can be implemented explicitly—an important feature of AP schemes.

For the spatial derivative in (4), one can apply the usual finite difference/

volume schemes. For example, a first-order upwind scheme (applied to the

Riemann invariants u� 1ffiffiffi
a

p v) results in

un+ 1j �u�j
Dt

+
v�j+ 1� v�j�1

2Dx
¼

ffiffiffi
a

p
Dx
2

u�j+ 1�2u�j + u
�
j�1

ðDxÞ2 ,

vn + 1j � v�j
Dt

+ a
u�j + 1�u�j�1

2Dx
¼

ffiffiffi
a

p
Dx
2

v�j + 1�2v�j + v
�
j�1

ðDxÞ2 :

8>>>><
>>>>:

(5)

Now let us check the AP property of the above scheme. We will keep Dt,
Dx fixed and send e! 0. Then the relaxation step (3) (with the spatial index j
added on) insures

u�j ¼ unj , v�j ¼ f ðu�j Þ¼ f ðunj Þ,
which, when substituted to the first equation of (5), yields

un+ 1j �unj
Dt

+
f ðunj+ 1Þ� f ðunj�1Þ

2Dx
¼

ffiffiffi
a

p
Dx
2

unj+ 1�2unj + u
n
j�1

ðDxÞ2 : (6)
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The scheme (6) is nothing but the Lax–Friedrichs or Rusanov scheme applied

to the limiting equation (2). Hence the scheme (3) and (4) is AP, in both time

and space.

2.2 The BGK Model

The BGK model widely used in kinetic theory takes the following form:

@t f + v � rx f ¼ 1

e
ðM� f Þ, (7)

where f ¼ f(t, x, v) is a probability distribution function of particles at time t,
position x2O�d and velocity v2d . e is the Knudsen number defined as

the ratio of the mean free path over the characteristic length. M is the local

equilibrium or Maxwellian defined through the moments of f:

MðvÞ¼ r

ð2pTÞd=2
exp �jv�uj2

2T

 !
, (8)

where r, u and T are, respectively, the density, bulk velocity and temperature:

r¼
Z
d
fdv, u¼ 1

r

Z
d
vfdv, T¼ 1

dr

Z
d
jv�uj2fdv:

It is important to note that M so defined shares the same first d + 2 moments

with f:

U :¼ðr,ru,EÞT ¼
Z
d
ffðvÞdv¼

Z
d
MfðvÞdv, fðvÞ¼ ð1,v, jvj2=2ÞT , (9)

where E¼ 1

2
rðjuj2 + dTÞ is the total energy. Therefore, if one multiplies

equation (7) by f(v) and integrates over v, the right-hand side will vanish

and one obtains

@tr +rx � ðruÞ¼ 0,

@tðruÞ +rx � ðru�u+Þ¼ 0,

@tE +rx � ðEu +u + qÞ¼ 0,

8><
>: (10)

where  and q are the stress tensor and heat flux defined by

¼
Z
d
ðv�uÞ�ðv�uÞfdv, q¼ 1

2

Z
d
ðv�uÞjv�uj2f dv:

The system (10) is the local conservation law which is not closed. However,

when e! 0, (7) implies f ¼M. This, substituted into (10), yields a closed

system (the compressible Euler equations):

Asymptotic-Preserving Schemes Chapter 5 107



@tr+rx � ðruÞ¼ 0,

@tðruÞ+rx � ðru�u+ pIÞ¼ 0,

@tE+rx � ððE + pÞuÞ¼ 0,

8><
>: (11)

where p ¼ rT is the pressure and I is the identity matrix.

Our goal here is to design a numerical scheme for the BGK model (7) that

is efficient when e is small and can capture the asymptotic Euler limit (11) at

the discrete level. Similarly as the Jin–Xin model, we adopt the time-splitting

strategy and treat the stiff collision part implicitly and the nonstiff convection

part explicitly (Coron and Perthame, 1991):

f � � f n

Dt
¼ 1

e
ðM�� f �Þ, ðcollision stepÞ (12)

f n+ 1� f �

Dt
+ v � rx f

� ¼ 0: ðconvection stepÞ (13)

Although the collision step appears implicit (M� is defined through f � in a

nonlinear way), it can be implemented explicitly. Indeed, taking the momentsR
d �fðvÞdv on both sides of (12) gives U� ¼ Un due to property (9), that is,

the macroscopic quantities r, u and T are conserved in this step, so is the

Maxwellian M� ¼Mn. Therefore, one does not need any iterative solver

for the collision step. For the spatial discretization in the convection step,

one can still apply the upwind scheme (assume x and v are one-dimensional

for simplicity):

f n+ 1j � f �j
Dt

+

v + jvj
2

ð f �j � f �j�1Þ+
v�jvj
2

ð f �j+ 1� f �j Þ
Dx

¼ 0:
(14)

Let us verify the AP property of the proposed scheme. Keeping Dt, Dx
fixed, and sending e! 0 in (12) implies

f � ¼M� ¼Mn: (15)

Now replacing f� with Mn in (14), and taking the moments
R
 �fðvÞdv,

one gets

Un+ 1
j �Un

j

Dt
+
Fn
j+ 1

2

�Fn
j� 1

2

Dx
¼ 0, (16)

where the flux Fj + 1
2
is defined as

Fj+ 1
2
¼F +

j +F�
j+ 1 with F�

j ¼
Z
1

v�jvj
2

MjfðvÞdv: (17)

Thanks to the special form of the Maxwellian, F�
j can be represented in

closed form in terms of the error function as
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F�
j ¼

rjujA
�
j �rjBj

rjTj + rju
2
j

� �
A�
j �rjujBj

3

2
rjTjuj +

1

2
rju

3
j

� �
A�
j � 1

2
rju

2
j + rjTj

� �
Bj

0
BBBB@

1
CCCCA (18)

with

A�
j ¼ 1

2
1� erfðsjÞ
� �

, Bj ¼ e�s2j

ffiffiffiffiffiffi
Tj
2p

r
, sj ¼ ujffiffiffiffiffiffiffi

2Tj
p :

(16)–(18) is just the kinetic flux vector splitting (KFVS) scheme (Deshpande,

1986; Pullin, 1980) for the limiting compressible Euler equations (11). Hence

the scheme (12) and (13) is AP, in both time and space.

The above scheme is not necessarily the only AP scheme. Two variants

are immediate.

(1) Instead of applying the backward Euler scheme in (12), one can solve this

step exactly

f � ¼ e�
Dt
e f n + 1� e�

Dt
e

� �
Mn,

where we again used the fact that Mn does not change over the collision step.

This method is also AP since as e! 0, we still have (15).

(2) Instead of time splitting, one can apply an implicit–explicit (IMEX) type

scheme to the original equation (7):

f n+ 1� f n

Dt
+ v � rx f

n ¼ 1

e
ðMn+ 1� f n+ 1Þ: (19)

This scheme can still be solved in an explicit manner albeit Mn+ 1 is implicit.

Specifically, taking the moments
R
d �fðvÞdv on both sides of (19) and using

the property (9), one has

Un + 1�Un

Dt
+rx �

Z
d
vfðvÞf ndv¼ 0: (20)

From (20), one can solve for Un+1, which consequently defines Mn+ 1. Thus

f n+1 can be obtained from (19) explicitly. To see the AP property, as e! 0,

(19) implies f n ¼Mn for any n. Replacing f n with Mn, (20) is clearly a

consistent discretization of the compressible Euler system (11).

Remark 1. The numerical schemes presented in this section are all first-order

accurate in both space and time. To achieve higher order in space, standard

high-order spatial discretizations (e.g. weighted essentially nonoscillatory

(WENO), discontinuous Galerkin (DG) schemes) can be used. The situation

for time is, however, different. It is worthwhile to mention that standard high-

order time-splitting methods such as the Strang splitting will suffer from order
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reduction when e! 0 (Jin, 1995). Rather, one can use the Runge–Kutta
splitting schemes (Caflisch et al., 1997) or the more general IMEX methods

in the nonsplitting framework (Pareschi and Russo, 2005; Puppo and

Pieraccini, 2007).

In the above two examples, in spite of the nonlinear stiff terms which are

treated implicitly, one can implement the schemes explicitly, thanks to the

special structure of the relaxation terms. This will not be true for more general

source or collision terms. In the next section we will see how these two spe-

cial examples can be utilized to develop AP schemes for general hyperbolic

and kinetic equations in which the nonlinear stiff terms can be implemented

explicitly.

3 AP SCHEMES FOR GENERAL HYPERBOLIC AND KINETIC
EQUATIONS

In this section we discuss several generic AP strategies including the penali-

zation, exponential reformulation and micro–macro decomposition. Since

the classical Boltzmann equation (Cercignani, 1988) constitutes the central

model in kinetic theory, it will be used throughout to illustrate the ideas of

the three techniques. Application of each strategy to other equations will be

mentioned at the end of each subsection.

We first briefly review the Boltzmann equation and its properties. The

equation reads as

@t f + v � rx f ¼ 1

e
Qð f Þ, (21)

where, compared with the BGK model (7), the only difference lies in the

collision term Qð f Þ—a nonlinear integral operator modeling the binary inter-

action among particles:

Qð f ÞðvÞ¼
Z
d

Z
Sd�1

Bðv� v*,sÞ f ðv0Þf ðv0�Þ� f ðvÞf ðv*Þ
	 


dsdv*:

Here (v, v�) and (v0, v�0) are the velocity pairs before and after a collision,

during which the momentum and energy are conserved; hence (v0, v�0) can

be represented in terms of (v, v�) as

v0 ¼ v+ v*
2

+
jv� v*j

2
s,

v0� ¼
v + v*
2

�jv� v*j
2

s,

8><
>:

with the parameter s varying in the unit sphere Sd�1. The collision kernel

B(v � v�, s) is a nonnegative function depending only on jv � v�j and cosine

of the deviation angle
s � ðv� v*Þ
jv� v*j

.

110 Handbook of Numerical Analysis



The collision operator Qð f Þ conserves mass, momentum and energy:Z
d
Qð f ÞfðvÞdv¼ 0, fðvÞ¼ ð1,v, jvj2=2ÞT : (22)

It satisfies the celebrated Boltzmann’s H-theorem:

�
Z
d
Qð f Þ ln fdv� 0:

Moreover, Z
d
Qð f Þ ln fdv¼ 0,Qð f Þ¼ 0, f ¼M, (23)

where M is given by (8). This means the entropy is maximized if and only if f
reaches the local equilibrium.

As for the BGK model, if e! 0, the macroscopic limit of the Boltzmann

equation is also the compressible Euler system (11) (which can be easily seen

using (22) and (23)). Via the Chapman–Enskog expansion (Chapman and

Cowling, 1991), one can derive from the Boltzmann equation the Navier–
Stokes limit while retaining O(e) terms:

@tr+rx � ðruÞ¼ 0,

@tðruÞ+rx � ðru�u + pIÞ¼ erx � ðmsðuÞÞ,
@tE+rx � ððE+ pÞuÞ¼ erx � ðmsðuÞu+ krxTÞ,

8><
>: (24)

where sðuÞ¼rxu+rxu
T � 2

d
rx � uI. m and k are the viscosity and heat con-

ductivity, determined through the linearized Boltzmann collision operator

(Bardos et al., 1991).

The construction of AP schemes for the Boltzmann equation (21) is by no

means trivial. Due to its complicated form, the implicit discretization of the

collision operator will be difficult.

3.1 AP Schemes Based on Penalization

The penalization method, introduced by Filbet and Jin (2010), was the first

AP scheme for the nonlinear Boltzmann equation. The idea is to penalize

Qð f Þ by the BGK operator:

@t f + v � rx f ¼Qð f Þ�bðM� f Þ
e|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

less stiff, explicit

+
bðM� f Þ

e|fflfflfflfflfflffl{zfflfflfflfflfflffl}
stiff, implicit

,

where b is some constant chosen properly to approximate the Frechet deriva-

tive of Qð f Þ around M. After penalization, terms in the first brace become

less stiff or nonstiff and can be treated explicitly. The other part has to be
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done implicitly but it is a BGK operator thus many techniques introduced in

the previous section can be applied here.

A first-order IMEX discretization of (21) can thus be written as follows:

f n+ 1� f n

Dt
+ v � rx f

n ¼Qð f nÞ�bðMn� f nÞ
e

+
bðMn+ 1� f n+ 1Þ

e
: (25)

This is an implicit scheme but can be solved explicitly similarly as in (19).

Indeed, taking the moments
R
d �fðvÞdv on both sides of (25) and using the

properties (9) and (22), we still have (20), from which one can solve for Un+1,

hence Mn + 1. Then fn+1 can be obtained from (25) explicitly. In practice, b can

be roughly estimated as

b¼ sup
v

jQ�ð f Þj,

where Q� is the loss part of the collision operator defined such that

Qð f Þ¼Q +ð f Þ� fQ�ð f Þ. b can also be made time and spatially dependent

for better numerical accuracy.

Concerning the AP property, the following results were established in

Filbet and Jin (2010).

Proposition 1. Let f n be the numerical solution given by the scheme (25).

(i) If e! 0 and f n ¼Mn +OðeÞ, then f n+ 1 ¼Mn+ 1 +OðeÞ.
(ii) Assume e ≪ 1 and f n ¼Mn +OðeÞ. If there exists a constant C > 0 such

that

f n+ 1� f n

Dt

����
����+ Un + 1�Un

Dt

����
����	C,

then the scheme (25) asymptotically becomes a first order in time approxima-
tion of the compressible Navier–Stokes equations (24).

The property (i) above is a weaker version of AP property since one requires

the solution to be close to the equilibrium initially. Although hard to prove

theoretically, extensive numerical results in Filbet and Jin (2010) illustrate

that the penalization scheme can achieve the following stronger AP

property: regardless of the initial condition f 0, there exists an integer N > 0

such that

f n ¼Mn +OðeÞ, for any n�N: (26)

Substituting (26) into (25) and taking the moments, one has

Un+ 1�Un

Dt
+rx �

Z
d
vfðvÞMndv +OðeÞ¼ 0, for any n�N,

which is a consistent discretization to the limiting Euler system (11). This

means the scheme is AP after an initial transient time.
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Remark 2. A possible way to remove the initial layer hence achieve AP in one

time step was suggested in Yan and Jin (2013), where the idea is to perform

the penalization in two successive steps:

f � � f n

Dt
+ v � rx f

n ¼Qð f nÞ�bðMn� f nÞ
e

+
bðM�� f �Þ

2e
,

f n+ 1� f �

Dt
¼ bðMn+ 1� f n+ 1Þ

2e
:

8>><
>>:

The penalization method was also applied to the nonlinear hyperbolic system

with stiff relaxation in Filbet and Jin (2010):

@tu+ @xgðu,vÞ¼ 0,

@tv+ @xhðu,vÞ¼ 1

e
Rðu,vÞ,

(
(27)

where the term R is dissipative: @vR 	 0 and possesses a unique local

equilibrium: R(u, v) ¼ 0 implies v ¼ f(u). Then when e! 0, one has the

macroscopic limit

@tu+ @xgðu, f ðuÞÞ¼ 0: (28)

Here inverting an implicit R is not as simple as that in the Jin–Xin model (1).

Using the penalization, this term can be treated as follows:

un+ 1�un

Dt
+ @xgðun,vnÞ¼ 0,

vn+ 1� vn

Dt
+ @xhðun,vnÞ¼ 1

e
½Rðun,vnÞ+ bðvn� f ðunÞÞ
�b

e
½vn+ 1� f ðun + 1Þ
:

8>><
>>:

(29)

For this scheme, one can actually prove a similar AP property (26): for any

initial condition v0, u0, as long as b>
1

2
sup j@vRj, there exists an integer

N > 0 such that

vn ¼ f ðunÞ+OðeÞ, for any n�N: (30)

Plugging (30) into the first equation of (29), we see that the scheme is AP

beyond an initial layer.

Remark 3. Numerical methods for nonlinear hyperbolic systems with stiff

relaxation/source terms were among the earliest AP schemes for time-

dependent problems. The limit (28) is an analogy of the Euler limit of the

Boltzmann equation. If one uses the Chapman–Enskog expansion to O(e)
term, then (27) can be approximated by a parabolic equation, an analogy of

the Navier–Stokes limit to the Boltzmann equation. Numerical study of sys-

tem of the type (27) begun in the works (Jin, 1995; Jin and Levermore,

1996), where the AP principle was applied to design numerical schemes to

handle the stiff relaxation term. While an IMEX type Runge–Kutta method
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was used in Jin (1995) to capture the solution of (28), to capture the diffusion

limit is much more difficult, since the numerical viscosity of O(Dx) in shock

capturing methods easily dominates the physical viscosity term of O(e), unless
special flux is used that builds in the limit [see Jin and Levermore (1996) and

its further study and extension to unstructured meshes in Berthon et al. (2016);

Buet et al. (2012)]. For AP schemes for gas dynamics with external force and

frictions (see Chalons et al., 2013). In principle one cannot expect to take Dx,
Dt ≫ O(e) and still capture the solution of the diffusion limit (likewise, the

compressible Navier–Stokes solution in a Boltzmann solver), unless special

numerical viscosity can be chosen so it does not pollute the physical viscosity.

For smooth solutions this should not be a problem. However, for shocks and

boundary layers, which have thickness depending on e, one cannot obtain reli-

able solution to the diffusion or compressible Navier–Stokes equations with

mesh size independent of e.
The idea of using a linear/simpler operator to penalize the nonlinear/compli-

cated operator turns out to be a generic approach. For specific problems,

one needs to seek appropriate penalization operator that serves the purpose,

and this usually relies on the knowledge of the original operator. For example,

consider the nonlinear Fokker–Planck–Landau equation whose collision

operator is given by

Qð f ÞðvÞ¼rv �
Z
d
Aðv� v*Þ f ðv*Þrvf ðvÞ� f ðvÞrv* f ðv*Þ

	 

dv*,

where A is a semipositive definite matrix. This equation is relevant in the

study of Coulomb interaction (Villani, 2002). The diffusive nature of the col-

lision operator introduces more stiffness. An explicit scheme would require

Dt ¼ O(e(Dv)2) which is more restrictive than the Boltzmann case. It was

shown in Jin and Yan (2011) that the BGK operator is no longer suitable

and the following Fokker–Planck operator was proposed as a penalization:

PFP ¼rv � Mrv
f

M
� �� �

:

Similar approaches, with variant penalties, have been proposed for the quan-

tum Boltzmann equation (Filbet et al., 2012), the quantum Fokker–Planck–
Landau equation (Hu et al., 2012), the multispecies Boltzmann equation

(Jin and Li, 2013) and the two-scale collisions for semiconductor equations

(Hu and Wang, 2015; Hu et al., 2015a).

Another AP scheme, developed later in Liu et al. (2016), relies on the inte-

gral representation of the BGK equation. The final form of the scheme also

ends up with a linear combination—with slightly different coefficients—of

the Boltzmann collision operator and the BGK operator. The coefficients

are discontinuous so one turns off the Boltzmann operator and the solver

becomes a pure BGK solver when the mean free path is small.
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3.2 AP Schemes Based on Exponential Reformulation

Another class of AP schemes is the exponential method. Unlike the penaliza-

tion idea, this method does not directly look for numerical schemes for the

original equation, but instead reformulates the equation into an exponential

form, with the equilibrium function embedded in, before applying the stan-

dard explicit Runge–Kutta method. Because the new formulation has the

Maxwellian function embedded, it is easier to capture the asymptotic limit:

in fact a large class of standard numerical methods achieves AP properties

automatically if applied to the new equation. Such flexibility allows one

to seek for more properties that are hard to obtain with the original form,

including the high order of accuracy in both time and space, the strong AP

property, positivity and many others.

Early studies on the homogeneous Boltzmann equation trace back to the

Wild sum approach (Gabetta et al., 1997). It was further elaborated in the

IMEX Runge–Kutta framework in Dimarco and Pareschi (2011) for homo-

geneous case and extended to treat the nonhomogenous case in Li and

Pareschi (2014).

Consider the space homogeneous Boltzmann equation:

@t f ¼ 1

e
Qð f Þ: (31)

Dimarco and Pareschi (2011) introduced the following reformulation:

@t ð f �MÞebt=e
h i

¼ @t f e
bt=e +

bð f �MÞ
e

ebt=e ¼Q�bðM� f Þ
e

ebt=e: (32)

Here b is an auxiliary parameter and as in the penalization method, bðM� f Þ
is used to approximate the Frechet derivative of Q. Numerically b could

be any O(1) number, but one chooses the smallest value that preserves the

positivity of f.
Eq. (32) is fully equivalent to the original problem (31), but since the

scheme is essentially applied to update the difference between the distribution

function and the Maxwellian, it removes the stiffness and forces the conver-

gence of f to M numerically, thus easily guarantees the AP property. It can

be shown that all explicit Runge–Kutta methods, when applied, not

only achieve the high-order convergence, but also obtains AP property

automatically.

For the nonhomogenous case, the equilibrium is convecting, making it

difficult to extend the scheme. To overcome that Li and Pareschi (2014)

explored the possibility of using an evolving Maxwellian function within each

time step. The Boltzmann equation is reformulated as:

@t ð f �MÞebt=e
h i

¼ P�bM
e

� v � rx f �@tM
� �

ebt=e,
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where P¼Q + bf . Meanwhile the moment equations are obtained by taking

the moments of the original Boltzmann equation (21):

@tU +

Z
fðvÞv � rx fdv¼ 0: (33)

To compute @tM, note that

@tM¼ @rM@tr +ruM� @tu + @TM@tT,

where @rM, ruM and @TM can all be expressed explicitly, and the time

derivatives of the other three macroscopic quantities r, u, T can be obtained

from (33).

Using the Runge–Kutta method on this formulation, one obtains the

following scheme:

l Step i

f ðiÞ �MðiÞ
� �

ecil ¼ f n�Mnð Þ +
Xi�1

j¼1

aij
h

e
PðjÞ �bMðjÞ � ev � rx f

ðjÞ � e@tMðjÞ
h i

ecjl

Z
ff ðiÞdv¼

Z
ff ndv+

Xi�1

j¼1

aij �h

Z
fv � rx f

ðjÞdv
� �

8>>>>><
>>>>>:

;

l Final step

f n+ 1�Mn+ 1
� �

el¼ f n�Mnð Þ +
Xn
i¼1

bi
h

e
PðiÞ �bMðiÞ � ev � rx f

ðiÞ � e@tMðiÞ
h i

ecilZ
ff n+ 1dv¼

Z
ff ndv+

Xn
i¼1

bi �h

Z
fv � rx f

ðiÞdv
� �

8>>>><
>>>>:

,

in which we denote l ¼ bDt/e and use the coefficients from the following

Butcher tableaux:

c1

c2 a21
...

. . . . . .

cν aν,1 aν,2 · · ·
b1 b2 · · · · · ·

This method preserves positivity, high-order accuracy and the strong AP

properties can also be proved (i.e. f is driven to M in one time step). It has

been successfully extended to treat the quantum Boltzmann equation

(Hu et al., 2015b), the multispecies Boltzmann equation (Li and Yang,

2014) and the Fokker–Planck–Landau equation (Dimarco et al., 2015).
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3.3 AP Schemes Based on Micro–Macro Decomposition

Another framework of AP schemes for the Boltzmann-like equations is

termed the ‘micro–macro’ decomposition, in which one decomposes the dis-

tribution function into the local Maxwellian, plus the deviation. It was used

by Liu and Yu (2004) for analyzing the shock propagation of the Euler equa-

tions in passing the fluid limit of the Boltzmann equation. One early attempt

of using such a decomposition to design an AP scheme was considered

by Klar and Schmeiser (2001) for the radiative heat transfer equations. Its

application to the nonlinear Boltzmann equation started with the work of

Bennoune–Lemou–Mieussens in Bennoune et al. (2008).

The main idea begins with decomposing f into the Maxwellian and the

remainder:

f ¼M + eg, with

Z
fðvÞgdv¼ 0:

Since the collision operator Qð f Þ :¼Q½ f , f 
 is bilinear, the linearized collision

operator, which depends on M, reads as:

LMg¼Q½M,g
+Q½g,M
:
With several lines of calculation, one gets

@tg + ðI�PMÞðv � rxgÞ�Q½g,g
 ¼ 1

e
LMg�ðI�PMÞðv � rxMÞ½ 
,

@t

Z
fMdv +

Z
fv � rxMdv+ erx � hvfgi¼ 0:

8><
>: (34)

Here PM is a projection operator that maps arbitrary M-weighted L2 function
into the null space of LM, namely, for any c2 L2ðM�1dvÞ:
hPMðcÞ,fi¼ hc,fMi, with PMðcÞ 2NullðLMÞ¼ SpanfM,vM, jvj2Mg:

For the Boltzmann equation one can write down the projection operator explicitly:

PMðcÞ
¼ 1

r
hci+ ðv�uÞ � hðv�uÞci

T
+

jv�uj2
2T

�d

2

 !
2

d

jv�uj2
2T

�d

2

 !
c

* +" #
M:

Unlike the original Boltzmann equation with stiff term Q½f , f 
, the two stiff

terms here are both linear thus their implicit discretization can be inverted easily.

In Bennoune et al. (2008), the following discretization is taken:

gn+ 1�gn

Dt
+ I�PMn

� �ðv � rxg
nÞ�Q½gn,gn
 ¼ 1

e
LMngn+ 1� I�PMn

� �ðv � rxMnÞ	 

,Z

fMn + 1dv+Dte
Z

fv � rxg
n+ 1dv¼

Z
fMndv�Dt

Z
fv � rxMndv:

8>><
>>:

(35)
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Obviously the only term that needs to be inverted is I�Dt
e
LM in the first

equation. It is a linear operator, and the negative spectrum guarantees the

invertibility. The quadratic operator Q½f , f 
 is no longer stiff and is treated

explicitly.

We list the AP property proved in Bennoune et al. (2008):

Proposition 2. The scheme is AP, more specifically:
(i) The time discretization (35) of the system (34) gives in the limit e ! 0 a

scheme consistent to the compressible Euler equations (11).
(ii) For small e, the scheme (35) is asymptotically equivalent, up to Oðe2Þ, to

an explicit time discretization of the Navier–Stokes equations (24).

Although LM is a linear operator, the computation, however, is far from being

satisfactory. In fact many techniques, including the Carleman representation,

used to speed up the computation of the Boltzmann collision operator

(Mouhot and Pareschi, 2006), cannot be applied for the linear operator. It is per-

haps for this reason, so far this method has only been applied to the BGKmodel,

as was done in Bennoune et al. (2008) [see an extension to themultispecies BGK

model in Jin and Shi (2009)]. Higher-order schemes can be achieved by combin-

ing IMEX scheme in time and DG discretization in space (Xiong et al., 2015).

4 OTHER ASYMPTOTIC LIMITS AND AP SCHEMES

In this section we briefly describe several other asymptotic limits and the con-

struction of corresponding AP schemes.

4.1 Diffusion Limit of Linear Transport Equation

In many applications, such as neutron transport and radiative transfer, the col-

lision operator is linear. The interesting scaling is the diffusive scaling.

A typical such equation has the form of

e@t f + v � rx f ¼ 1

e

Z
d
sðv,wÞ½MðvÞf ðwÞ�MðwÞf ðvÞ
dw, (36)

where M is the normalized Maxwellian

MðvÞ¼ 1

pd=2
expð�jvj2Þ:

The anisotropic scattering kernel s is rotationally invariant and satisfies

sðv,wÞ¼ sðw,vÞ> 0:

Define the collision frequency l as

lðvÞ¼
Z
d
sðv,wÞMðwÞdw	 m:
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One can show that as e ! 0, f! r(t, x)M(v) in (36), where rðt,xÞ¼ R f ðvÞdv
satisfies the diffusion equation (Markowich et al., 1990; Poupaud, 1991):

@tr¼rx � ðDrxrÞ,
with the diffusion coefficient matrix

D¼
Z

MðvÞ
lðvÞ v� vdv:

Developing numerical schemes for such equations that are efficient in dif-

fusive regimes constitutes the earliest works in AP schemes. It was carried out

first in Larsen et al. (1987) and Larsen and Morel (1989) for stationary trans-

port equation in which some spatial discretizations were studied. As men-

tioned earlier, the most challenging issue for AP schemes is the time

discretization, or rather, a reformulation of the equation so that it becomes

suitable for most spatial or velocity discretizations. It begins independently

with the work of Jin et al. (1998, 2000) and Klar (1998). The idea in Jin

et al. (2000) was to use an even and odd-decomposition to write f as a linear

combination of its even and odd parts (in velocity) satisfying a hyperbolic sys-

tem with stiff relaxation which can be solved using the ideas developed earlier

(Caflisch et al., 1997; Jin, 1995; Jin and Xin, 1995). In Lemou and Mieussens

(2008), the micro–macro decomposition approach was used [see also related

works Carrillo et al., 2008; Klar and Schmeiser, 2001]. A uniform in e stabil-
ity for this method was proved in Liu and Mieussens (2010). A high-order

DG-IMEX scheme based on micro–macro decomposition was proposed in

Jang et al. (2015), and the uniform stability was also established (Jang

et al., 2014). Most of the schemes designed, though successfully relaxed the

e dependence, still suffer from the parabolic scaling Dt ¼ O(Dx2), and it

was solved in Li and Wang (2016), where fully implicit scheme is used.

Another interesting approach using well-balanced scheme based on noncon-

servative product was given by Gosse and Toscani (2004), although the idea

has been developed only for one space dimension.

4.2 High-Field Limit

In kinetic equations, often there is a strong external field, such as the electric

or magnetic field, that balances the collision term, leading to the so-called

high-field limit (Cercignani et al., 1997). Consider for example the interaction

between the electrons and a surrounding bath through Coulomb force in elec-

trostatic plasma, where the electron distribution f(t, x, v) is governed by the

Vlasov–Poisson–Fokker–Planck system:

@t f + v � rx f �1

e
rxf � rvf ¼ 1

e
rv � ðvf +rvf Þ, (37)

�Dxf ¼ r�h, (38)
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where e¼ le
L

� �2

is the ratio between the mean free path and the Debye

length. Let e! 0 in (37), one obtains the high-field limit (Goudon et al.,

2005; Nieto et al., 2001):

@tr�rx � ðrrxfÞ¼ 0,

�Dxf¼ r�h:

One can combine the force term with the Fokker–Planck term in (37) as

@t f + v � rx f ¼ 1

e
rv � MrvðMf Þ½ 
,

where M :¼ e�jv +rxfj2=2. This is the starting point of two existing AP schemes

(Crouseilles and Lemou, 2011; Jin and Wang, 2011), based on which other

well-developed AP frameworks can be used. For more general collision

operator, for example, the semiconductor Boltzmann collision operator, this

trick does not apply and one needs other ideas (Jin and Wang, 2013). So far

there have not been many AP schemes for this limit and there remain many

interesting open questions (Gosse and Vauchelet, 2016).

4.3 Quasi-Neutral Limit in Plasmas

Consider the one-species recaled Euler–Poisson equations for charged particles:

@tn+rx � q¼ 0, (39)

@tq +rx � q�q

n

� �
+rxp¼ nrxf, (40)

e2Dxf¼ n�1, (41)

where n is the particle number density, q is the momentum, p ¼ ng is the

pressure law with g � 1 and f is the electric potential. Here the negatively

charged electrons with scaled charge equal to �1 is considered, with a uniform

ion background density set to 1. The dimensionless parameter e ¼ lD/L is

the scaled Debye length, i.e. the ratio of the actual Debye length lD to the

macroscopic length scale L. In many applications, e ≪ 1. This is the so-called

quasi-neutral regime. When e ! 0 in (41), one has n ¼ 1, and the following

quasi-neutral limiting equations arise (Brenier, 2000):

rx � q¼ 0, (42)

@tq+rx � ðq� qÞ¼rxf, (43)

which is the incompressible Euler equations.

Since the Poisson equation (41) becomes degenerate when e ! 0, a

direct discretization of the Euler–Poisson system performs poorly in the quasi-

neutral regime. A key idea introduced by Crispel et al. (2005) is to
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reformulate the system to a new one that remains uniformly elliptic. Notice
that when taking the limit e ! 0, the electric potential f undergoes drastic

changes from the Poisson equation (41) into

Dxf¼r2
x : ðq�qÞ, (44)

where r2
x denotes the Hessian and ‘:’ the contracted product of rank two ten-

sors. (44) is obtained by taking the divergence of (43). A uniformly stable

scheme should have a formulation that is consistent to (44) when e ! 0. To

achieve this, one can take @t on (39), rx � on (40) and @tt on (41) to get

@ttn+rx � @tq¼ 0, (45)

rx � @tq +r2
x :

q�q

n
+ pI

� �
¼rx � ðnrxfÞ, (46)

e2Dx@ttf¼ @ttn: (47)

Eliminating rx � @tq by combining (45) and (46) and using (47), one obtains

�rx � ½ðn + e2@ttÞrxf
+r2
x :

q�q

n
+ pI

h i
¼ 0: (48)

Note now Eq. (48) is uniformly elliptic and does not degenerate, and in fact

approaches to (44) as e ! 0. Thus, one can expect the asymptotic stability

with respect to e if a suitable time discretization is used.

This approach has also been generalized to two-fluid model (Crispel et al.,

2007), particle-in-cell method for Vlasov–Poisson system (Degond et al.,

2010), Euler–Maxwell system (Degond et al., 2012), among other plasma

models. For more details, see recent comprehensive reviews (Degond, 2013;

Degond and Deluzet, 2016).

4.4 Low Mach Number Limit of Compressible Flows

Recently there has been increasing research activities in developing Mach number

uniform fluid solvers. Consider the case of isentropic Navier–Stokes equations:

@tr+rx � ðruÞ¼ 0, (49)

@tðruÞ+rx � ðru� uÞ+ 1

e2
rxp¼ 1

Re
Dxu, (50)

where r is the density, u is the velocity, p ¼ rg is the pressure, e is the Mach

number and Re the Reynolds number. When e ≪ 1, one seeks for asymptotic

expansions: r ¼ r(0) + e2r(2) + ⋯, u ¼ u(0) + e2u(2) + ⋯, and p ¼ p(0) +
e2p(2) + ⋯ which then yield (Klainerman and Majda, 1981):

rx � uð0Þ ¼ 0,

@tu
ð0Þ + uð0Þ � rx

� �
uð0Þ +

1

rð0Þ
rxp

ð2Þ ¼ 1

rð0ÞRe
Dxu

ð0Þ:
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The standard explicit numerical method, when applied to the compressible

equations (49) and (50), requires Dt ¼ O(eDx) for stability and Dx ¼ o(e) to
reduce numerical dissipation (Dellacherie, 2010; Guillard and Viozat, 1999).

This imposes tremendous computational cost in the low Mach number or

incompressible regime.

In developing a numerical scheme that is efficient for all Mach numbers,

one needs to efficiently handle the fast moving acoustic waves that travel with

speed O(1/e) such that one can use mesh size and time step independent of e.
This is usually achieved by splitting the flux into fast moving (corresponding

to the acoustic waves) and a slowly moving one. One such approach was

introduced in Haack et al. (2012) [see a related method in Degond and

Tang (2011) and its extension to the full Euler and Navier–Stokes systems

(Cordier et al., 2012)], which takes the following splitting:

@tr + arx � ðruÞ+ ð1�aÞrx � ðruÞ¼ 0,

@tðruÞ+rx � ðru�uÞ+rx
pðrÞ�aðtÞr

e2

� �
+
aðtÞ
e2

rxr¼ 1

Re
Dxu,

8<
:

where a and a(t) are artificial parameters. By choosing a(t) well approximates

p0(r), the third term in the second equation is nonstiff and will be treated

explicitly. The term rxr calls for implicit treatment, but it could be done

easily due to the linearity, so only Poisson solvers are needed like in a projec-

tion method for incompressible Navier–Stokes equations (Chorin, 1968;

T�emam, 1969). The scheme is shock-capturing in the high Mach number

regime and reduces to a projection method when e ! 0.

This is a direction being rapidly developed. One can find other techniques

such as splitting by Klein (Klein, 1995; Noelle et al., 2014), Lagrange-

projection scheme (Zakerzadeh, 2016), a modification of the Roe solver

(Miczek et al., 2015) with applications to astrophysics problems, careful

choice of numerical viscosity (Dimarco et al., 2016), the reference (or equilib-

rium) solution based IMEX scheme (Noelle et al., 2015), etc. A recent inter-

esting study of stability of some well-known splittings for this problem was

conducted in Zakerzadeh and Noelle (to appear).

4.5 Stochastic AP Schemes

Our discussion so far has been retained exclusively to deterministic equations. In

practical applications, kinetic and hyperbolic problems almost always contain

parameters that are uncertain, due to modeling and/or measurement errors.

Initiated by the work (Jin et al., 2015), there has been increasing interest recently

in the development of AP schemes for quantifying uncertainties in kinetic equa-

tions. We take the following Goldstein–Taylor model as an example:

@tu+ @xv¼ 0,

@tv+
1

e
aðx,zÞ@xu¼�1

e
v,

8<
: (51)
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where a(x, z) is a random wave speed with z2 Iz �d, a set of random variables

equipped with probability density function p(z). These random variables

characterize the random inputs in the system. In the diffusion limit e! 0, one

has v ¼ �a(x, z)@xu from the second equation above, which, upon substitution

to the first equation, gives a heat equation with random diffusion coefficient:

@tu¼ @xðaðx,zÞ@xuÞ: (52)

To deal with the random parameters, a popular approach is the stochastic

Galerkin method based on generalized polynomial chaos expansion (gPC-sG)

(Xiu and Karniadakis, 2002), which has been successfully applied to many

physical and engineering problems (Ghanem and Spanos, 1991; Le Maitre

and Knio, 2010; Xiu, 2010). The gPC-sG is essentially a spectral method in

the random domain with the expansion basis chosen as orthogonal polyno-

mials with weight being the probability density p(z).
Now to solve the system (51) under both uncertainty and diffusive scaling,

a natural way would be to combine the gPC-sG with the deterministic AP

scheme properly. According to the definition in Jin et al. (2015), a scheme

is stochastic AP if a gPC-sG method for Eq. (51) becomes a gPC-sG approxi-

mation for the limiting equation (52) as e! 0, with the gPC order (the highest

degree of polynomials used to discretize z), Dt and Dx fixed. Under the gPC-sG
approximation, the discrete system is a deterministic set of equations, thus often

allows straightforward extension of the well-developed deterministic AP

schemes. For recent development of uncertainty quantification for kinetic

equations, see Jin et al. (2015, 2016), Jin and Liu (2016), Jin and Lu (2016),

and Zhu and Jin (2016).

5 CONCLUSION

In this chapter, we have reviewed the basic design principles and several

generic strategies of the construction of AP schemes for multiscale hyperbolic

and kinetic equations. To handle multiple temporal or spatial scales, unlike a

typical multiscale and multiphysical approach that requires the coupling of

microscopic and macroscopic solvers, the AP schemes solve exclusively

the microscopic equations. They allow the discretization parameters free of

the small scale constraints, while capture the coarse scale structure when the

small physical scale parameter approaches zero. This is usually achieved by

some implicit treatment or reformulation of the original equations, guided

by the underlying asymptotic limit. Although the classical Boltzmann equa-

tion was mainly used to illustrate the ideas, the techniques presented can be

applied to a large class of kinetic and hyperbolic equations. Other asymptotic

limits and AP schemes were discussed as well.
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