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Abstract Kinetic equations contain uncertainties in their collision kernels or
scattering coefficients, initial or boundary data, forcing terms, geometry, etc.
Quantifying the uncertainties in kinetic models have important engineering and
industrial applications. In this article we survey recent efforts in the study of
kinetic equations with random inputs, including their mathematical properties
such as regularity and long-time behavior in the random space, construction of
efficient stochastic Galerkin methods, and handling of multiple scales by stochastic
asymptotic-preserving schemes. The examples used to illustrate the main ideas
include the random linear and nonlinear Boltzmann equations, linear transport
equation and the Vlasov-Poisson-Fokker-Planck equations.

1 Introduction

Kinetic equations describe the non-equilibrium dynamics of a gas or system
comprised of a large number of particles using a probability density function. In
multiscale modeling hierarchy, they serve as a basic building block that bridges
atomistic and continuum models. On one hand, they are more efficient (requiring
fewer degrees of freedom) than molecular dynamics; on the other hand, they provide
reliable information at the mesoscopic level when the macroscopic fluid mechanics
laws of Navier-Stokes and Fourier become inadequate. The most fundamental (and
the very first) kinetic equation is the Boltzmann equation, an integro-differential
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equation describing particle transport and binary collisions [11, 16]. Proposed by
Ludwig Boltzmann in 1872, the equation is considered as the basis of the modern
kinetic theory. During the past decades, there have been enormous studies on
the Boltzmann and related kinetic models, both theoretically and numerically (cf.
[13, 20, 74]). This trend is ever-growing as the application of the kinetic theory
has already gone beyond traditional fields like rarefied gas dynamics [12], radiative
transfer [15], and branched out to microfabrication technology [48, 61], biological
and even social sciences [63].

In spite of the vast amount of existing research, the study of kinetic equations has
mostly remained deterministic and ignored uncertainty. In reality, however, there
are many sources of uncertainties that can arise in these equations. They may be
due to

• Incomplete knowledge of the interaction mechanism between particles. Kinetic
equations typically contain an integral operator modeling particle interactions.
Inside this integral, there is a term called collision or scattering kernel describing
the transition rate during particle collisions. Ideally, the collision kernel should
be calculated from first principles using scattering theory [11]. This, if not
impossible, is extremely complicated for complex particle systems. Therefore,
empirical collision kernels are often used in practice with the aim to reproduce
correct viscosity and diffusion coefficients [8, 9, 33, 50]. Specifically, these
kernels contain adjustable parameters whose values are determined by matching
with available experimental data for various kinds of particles.

• Imprecise measurement of the boundary data. A commonly used boundary for
kinetic equations is the so-called Maxwell boundary condition [11, 12], which
assumes part of the particles are bounced back specularly and part of them are
absorbed by the wall and re-emitted according to a special Gaussian distribution.
This distribution depends on the (measured) macroscopic properties of the wall
such as temperature and bulk velocity.

The uncertainties are of course not limited to the aforementioned examples: they
may also come from inaccurate measurement of the initial data, our lack of
knowledge of gas-surface interactions, forcing and geometry, etc. Understanding
the impact of these uncertainties is critical to the simulations of the complex kinetic
systems to validate the kinetic models, and will allow scientists and engineers to
obtain more reliable predictions and perform better risk assessment.

Despite tremendous amount of research activities in uncertainty quantification
(UQ) in recent decades in many areas of sciences and engineering, the study of
uncertainty in kinetic models, albeit important and necessary, has remained mostly
untouched territory until very recently. It is the goal of this survey to review
recent development of UQ for kinetic equations. Here the uncertainty is introduced
through random inputs, and we adopt the generalized polynomial chaos based
stochastic Galerkin (gPC-sG) approximation, which has been successfully applied
to many physical and engineering problems, see for instance, the overviews in
[27, 55, 66, 77]. Due to the high-dimensionality and intrinsic physical properties
of kinetic equations, the construction of stochastic methods represents a great
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challenge. We will use some prototype equations including the classical Boltzmann
equation, linear Boltzmann equations, and Vlasov-Poisson-Fokker-Planck system
to illustrate the main strategy.

It is well-known that the gPC-sG approach is intrusive, requiring more coding
efforts compared with non-intrusive methods such as the stochastic collocation
[32, 78]. The reason of our choice is twofold: (1) Due to its Galerkin formulation,
mathematical analysis of these methods can be conducted more conveniently.
Indeedmany of the analytical methods well-established in kinetic theory can be con-
veniently adopted or extended to study the stochastic Galerkin system of the random
kinetic equations; (2) Kinetic equations often contain small parameters such as the
mean free path/time which asymptotically lead to hyperbolic/diffusion equations.
We are interested in developing the stochastic analogue of the asymptotic-preserving
(AP) scheme, a scheme designed to capture the asymptotic limit at the discrete
level. The stochastic Galerkin method yields systems of deterministic equations
that resemble the deterministic kinetic equations, although in vector forms. Thus it
allows one to easily use the deterministic AP framework for the random problems,
allowing minimum “intrusivity” to the legacy deterministic codes. The stochastic
Galerkin method can ensure the desired convergence in the weak sense. The
resulting stochastic Asymptotic-Preserving (sAP) [46] sG methods will allow all
numerical parameters, such as mesh size, time-step and the number of gPC modes
chosen independently of the (possibly small) mean free path/time.

On the other hand, the study of regularity, coercivity and hypocoercivity on the
random kinetic equations, which will be reviewed in this article as well, provides
theoretical foundation for not only the stochastic Galerkin methods, but also the
stochastic collocation methods.

The rest of this paper is organized as follows. In the next section, we give a brief
review of some kinetic equations with random inputs and their basic properties. Sec-
tion 3 discusses the theoretical issues such as coercivity, hypocoercivity, regularity,
and long-time behavior for random kinetic equations. We then introduce in Sect. 4
the gPC-sG method. Special emphasis is given to the unique issues arising in kinetic
equations such as property of the collision operator under gPC-sG approximation
and efficient treatment of the nonlinear collision integral. Spectral accuracy of the
gPC-sG method is also established. In Sect. 5, we consider the kinetic equations in
diffusive scalings and construct the stochastic AP scheme following its deterministic
counterpart. We conclude in Sect. 6 and list a few open problems in this field.

2 Preliminaries on Kinetic Equations with Random Inputs

In this section, we review some kinetic equations and their basic properties that
will be used in this article. Due to the large variety of kinetic models, it is
impossible to give a thorough description of all of them. Therefore, we will
concentrate on several prototype models: the linear neutron transport equation, the
semiconductor Boltzmann equation, the Vlasov-Poisson-Fokker-Planck equation,
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and the classical nonlinear Boltzmann equation. Other related kinetic models will
be briefly mentioned at the end of the section.

As mentioned in Sect. 1, for real-world problems, the collision/scattering kernel,
initial/boundary data, source, or other physical parameters in the kinetic equations
may contain uncertainties that propagate into the solution and affect its property sub-
stantially. To characterize these random inputs, we assume certain quantities depend
on a random vector z 2 R n in a properly defined probability space .˙;A ;P/, whose
event space is ˙ and is equipped with !-algebra A and probability measure P. We
also assume the components of z are mutually independent random variables with
known probability !.z/ W Iz !! RC , obtained already through some dimension
reduction technique, e.g., Karhunen-Loève (KL) expansion [60], and do not pursue
further the issue of random input parameterization. We treat z as a parameter and
the properties given in this section hold for every given z.

2.1 The Linear Transport Equation with Isotropic Scattering

We first introduce the linear transport equation in one dimensional slab geometry:

"@tf C v@xf D
!

"
L f ! "!af C "S; t > 0; x 2 Œ0; 1"; v 2 Œ!1; 1"; z 2 Iz;

(1)

L f .t; x; v; z/ D 1

2

Z 1

!1
f .t; x; v0; z/ dv0 ! f .t; x; v; z/ ; (2)

with the initial condition

f .0; x; v; z/ D f 0.x; v; z/: (3)

This equation arises in neutron transport, radiative transfer, etc. and describes
particles (for example neutrons) transport in a background media (for example
nuclei). f .t; x; v; z/ is the density distribution of particles at time t, position x, and
v D ˝ " ex D cos # where # is the angle between the moving direction and x-axis.
!.x; z/, !a.x; z/ are total and absorption cross-sections respectively. S.x; z/ is the
source term. For !.x; z/, we assume

!.x; z/ # !min > 0: (4)

" is the dimensionless Knudsen number, the ratio between particle mean free path
and the characteristic length (such as the length of the domain). The equation is
scaled in long time with strong scattering.
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We are interested in problems that contain uncertainties in the collision cross-
section, source, initial or boundary data. Thus in our problem f , ! , !a and S all
depend on z.

Denote

Œ$" D 1

2

Z 1

!1
$.v/ dv (5)

as the average of a velocity dependent function $.
Define in the Hilbert space L2

!
Œ!1; 1"I $!1 dv

"
the inner product and norm

hf ; gi$ D
Z 1

!1
f .v/g.v/$!1 dv; k fk2$ D hf ; f i$ : (6)

The linear operatorL satisfies the following properties [6]:

• ŒL f " D 0, for every f 2 L2.Œ!1; 1"/;
• The null space of f isN .L / D Span f $ j $ D Œ$" g;
• The range of f isR.L / D N .L /? D f f j Œ f " D 0 gI
• Coercivity: L is non-positive self-adjoint in L2.Œ!1; 1"I$!1 dv/, i.e., there is a

positive constant sm such that

hf ;L f i$ $ !2smk fk2$ ; 8 f 2 N .L /?I (7)

• L admits a pseudo-inverse, denoted byL !1, fromR.L / toR.L /.

Let % D Œ f ". For each fixed z, the classical diffusion limit theory of linear
transport equation [6, 7, 52] gives that, as " ! 0, % solves the following diffusion
equation:

@t% D @x.&.x; z/@x%/ ! !a.x; z/%C S.x; z/; (8)

where the diffusion coefficient

&.x; z/ D 1

3
!.x; z/!1 : (9)

When z is random, (8) is a random diffusion equation.

2.2 The Semiconductor Boltzmann Equation

The semiconductor Boltzmann equation describes the electron transport in a
semiconductor device [61]:

"@tf C v " rx f Crx $ " rvf D
1

"
Qs. f /; t > 0; x 2 ˝ % R d; v 2 R d; z 2 Iz;

(10)
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where f .t; x ; v; z/ is again the particle distribution function, $.t; x ; z/ is the electric
potential given a priori or produced self-consistently by f through the Poisson
equation:

'x$ D % ! h;

where %.t; x ; z/ D
R
f dv, and h.x ; z/ is the doping profile (some physical

parameters such as the material permittivity are omitted for brevity). The collision
operatorQs. f / is a linear approximation of the electron-phonon interaction:

Qs. f /.v; z/ D
Z

Rd
Œs.v"; v; z/f .v"; z/! s.v; v"; z/f .v; z/" dv"; (11)

where s.v; v"; z/ describes the transition rate from v to v" and may take various
forms depending on the approximation. Here we assume

s.v; v"; z/ D !.v; v"; z/Ms.v"/;

withMs being the normalized Maxwellian:

Ms.v/ D 1

(d=2
e!jvj2 I

the scattering kernel ! being rotationally invariant, symmetric and bounded:

!.v; v"; z/ D !.jvj; jv"j; z/; 0 < !min $ !.v; v"; z/ D !.v"; v; z/ $ !max:

Define the collision frequency

).v; z/ D
Z

Rd
!.v; v"; z/Ms.v"/ dv"; (12)

then it is easy to see !0 $ ).v; z/ $ !1. Therefore, (11) can be written as

Qs. f /.v; z/ D
Z

Rd
!.v; v"; z/ ŒMs.v/f .v"; z/!Ms.v"/f .v; z/" dv"

D Ms.v/
Z

Rd
!.v; v"; z/f .v"; z/ dv" ! ).v; z/f .v; z/: (13)

It can be shown that the collision operator (13) satisfies

Z

Rd
Qs. f /.v; z/f .v; z/=Ms.v/ dv

D !1
2

Z

Rd

Z

Rd
!.v; v"; z/Ms.v/Ms.v"/

#
f .v/
Ms.v/

! f .v"/
Ms.v"/

$2
dv"dv $ 0:

(14)
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Furthermore, the followings are equivalent

Z

Rd
Qs. f /

f
M

dv D 0” Qs. f / D 0” f D %.t; x ; z/Ms.v/: (15)

Then, as "! 0, (10) leads to the following drift-diffusion limit [67]:

@t% D rx " .D .rx %C 2%E// ; (16)

where E D !rx $ is the electric field, D is the diffusion coefficient matrix defined
by

D D
Z

Rd

v v̋Ms.v/
).v; z/

dv:

2.3 The Vlasov-Poisson-Fokker-Planck System

The Vlasov-Poisson-Fokker-Planck (VPFP) system arises in the kinetic modeling of
the Brownian motion of a large system of particles in a surrounding bath [14]. One
application of such system is the electrostatic plasma, in which one considers the
interactions between the electrons and a surrounding bath via the Coulomb force.
In the dimensionless VPFP system with uncertainty, the time evolution of particle
density distribution function f .t; x ; v; z/ under the action of an electrical potential
$.t; x ; z/ satisfies

(
@tf C 1

ı
v " rx f ! 1

"
rx$ " rvf D 1

ı"
F f ;

!'x$ D % ! 1; t > 0; x 2 ˝ % R d; v 2 R d; z 2 Iz;
(17)

with initial condition

f .0; x ; v; z/ D f 0.x ; v; z/: (18)

Here, F is a collision operator describing the Brownian motion of the particles,
which reads,

F f D rv "
#
Mvrv

#
f
Mv

$$
; (19)

whereMv is the global equilibrium or global Maxwellian,

Mv D 1

.2(/
d
2

e! jvj2
2 : (20)
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ı is the reciprocal of the scaled thermal velocity, " represents the scaled thermal
mean free path. There are two different regimes for this system. One is the high
field regime, where ı D 1. As " ! 0, f goes to the local Maxwellian Mv

l D
1

.2(/
d
2
e! jv!rx $j2

2 , and the VPFP system converges to a hyperbolic limit [2, 31, 65]:

(
@t%Crx " .%rx$/ D 0;
!'x$ D % ! 1:

(21)

Another regime is the parabolic regime, where ı D ". When " ! 0, f goes to the
global MaxwellianMv , and the VPFP system converges to a parabolic limit [68]:

(
@t% ! rx " .rx % ! %rx$/ D 0;
!'x$ D % ! 1:

(22)

2.4 The Classical Nonlinear Boltzmann Equation

We finally introduce the classical Boltzmann equation that describes the time
evolution of a rarefied gas [11]:

@tf C v " rx f D Qb. f ; f /; t > 0; x 2 ˝ % R d; v 2 R d; z 2 Iz; (23)

where Qb. f ; f / is the bilinear collision operator modeling the binary interaction
among particles:

Qb. f ; f /.v; z/ D
Z

Rd

Z

Sd!1
B.v; v"; *; z/

%
f .v0; z/f .v0"; z/ ! f .v; z/f .v"; z/

&
d* dv":

(24)

Here .v; v"/ and .v0; v0"/ are the velocity pairs before and after a collision, during
which the momentum and energy are conserved; hence .v0; v0"/ can be represented
in terms of .v; v"/ as

8
<̂

:̂

v0 D vC v"
2
C jv! v"j

2
*;

v0" D
vC v"
2
! jv ! v"j

2
*;

with the parameter * varying on the unit sphere Sd!1. The collision kernel
B.v; v"; *; z/ is a non-negative function depending on jv ! v"j and cosine of the
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deviation angle # :

B.v; v"; *; z/ D B.jv! v"j; cos #; z/; cos # D * " .v! v"/
jv ! v"j

:

The specific form of B is determined from the intermolecular potential via the
scattering theory. For numerical purpose, a commonly used model is the variable
hard-sphere (VHS) model introduced by Bird [9]:

B.jv! v"j; cos #; z/ D b).z/jv! v"j); !d < ) $ 1; (25)

where ) > 0 corresponds to the hard potentials, and ) < 0 to the soft potentials.
The collision operator (24) conserves mass, momentum, and energy:

Z

Rd
Qb. f ; f / dv D

Z

Rd
Qb. f ; f /v dv D

Z

Rd
Qb. f ; f /jvj2 dv D 0: (26)

It satisfies the celebrated Boltzmann’s H-theorem:

!
Z

Rd
Qb. f ; f / ln f dv # 0;

which implies that the entropy is always non-decreasing. Furthermore, the following
statements are equivalent

Z

Rd
Qb. f ; f / ln f dv D 0” Qb. f ; f / D 0” f DM b.v/.%.t;x ;z/;u.t;x ;z/;T.t;x ;z//;

whereM b is the local equilibrium/Maxwellian defined by

M b D %

.2(T/d=2
e! .v!u/2

2T ;

with %, u, T being, respectively, the density, bulk velocity, and temperature:

% D
Z

Rd
f dv; u D 1

%

Z

Rd
fv dv; T D 1

d%

Z

Rd
f jv! uj2 dv: (27)

A widely used boundary condition for Boltzmann-like kinetic equations is the
Maxwell boundary condition which is a linear combination of specular reflection
and diffusion (particles are absorbed by the wall and then re-emitted according to a
Maxwellian distribution of the wall). Specifically, for any boundary point x 2 @˝ ,
let n.x / be the unit normal vector to the boundary, pointed to the domain, then the
in-flow boundary condition is given by

f .t; x ; v; z/ D g.t; x ; v; z/; .v ! uw/ " n > 0;
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with

g.t; x ; v; z/ D.1 ! ˛/f .t; x ; v ! 2Œ.v ! uw/ " n"n; z/

C ˛

.2(/
d!1
2 T

dC1
2

w

e! jv!uwj2
2Tw

Z

.v!uw/#n<0
f .t; x ; v; z/j.v! uw/ " nj dv;

(28)

where uw D uw.t; x ; z/, Tw D Tw.t; x ; z/ are the velocity and temperature of the
wall (boundary). The constant ˛ (0 $ ˛ $ 1), which may depend on z as well, is
the accommodation coefficient with ˛ D 1 corresponding to the purely diffusive
boundary, and ˛ D 0 the purely specular reflective boundary.

2.5 Other Related Kinetic Models: A Glance

In addition to the above introduced equations, we mention a few related kinetic
models. Interested readers may consult the survey papers [11, 20, 74] for details.
First of all, the collision operator does not have to be the aforementioned forms:
when the deviation angle # is small, the Boltzmann collision integral (24) diverges
and one has to consider its grazing collision limit—the Fokker-Planck-Landau
operator [51], which is a diffusive operator relevant in the study of Coulomb
interactions. When the quantum effect is non-negligible (particles behave as Bosons
or Fermions), (11) or (24) needs to be modified to include an extra factor like .1 ḟ /,
resulting in the so-called quantum or degenerate collision operators [19, 73]. Other
generalizations such as the multi-species model [71] (system consists of more than
one type of particles), inelastic model [75] (during collisions only the mass and
momentum are conservedwhereas the energy is dissipative, for example, in granular
materials) are also possible. Secondly, the forcing term on the left hand side is not
necessary as that shown in (10): generally one can couple the kinetic equation with
the Maxwell equation where both electric and magnetic effects are present [72].

3 Coercivity, Hypocoercivity, Regularity and Long Time
Behavior

Coercivity, or more generally hypocoercivity, describing the dissipative nature of
the kinetic collision operators, plays important roles in the study of the solution
of kinetic equations toward the local or global Maxwellian [74, 76]. For uncertain
problems, one can extend such behavior to the random space, thus gives rise to
regularity or long-time estimates in the random space of the solution, allowing one
to quantify the long-time impact of the uncertainties for some statistical quantities
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of interest. In this section, we will review some of recent results in this direction,
in particular, how such analysis can be used to understand the regularity and
propagation of uncertainty for random kinetic equations.

In this section we will restrict our discussion to the one-dimensional random
variable z with finite support Iz (e.g., uniform and beta distributions). Generalization
to multi-dimensional random variables with finite support can be carried out in a
similar fashion.

3.1 The Linear Transport Equation

To study the regularity and long-time behavior in the random space of the linear
transport equation (1)–(3), we first recall the Hilbert space of the random variable

H.IzI ! dz/ D
n
f j Iz ! RC ;

Z

Iz
f 2.z/!.z/ dz < C1

o
; (29)

equipped with the inner product and norm defined as

hf ; gi! D
Z

Iz
fg!.z/ dz; k fk2! D hf ; f i! : (30)

We also define the kth order differential operator with respect to z as

Dkf .t; x; v; z/ WD @kz f .t; x; v; z/; (31)

and the Sobolev norm in H as

k f .t; x; v; "/k2Hk WD
X

˛$k

kD˛f .t; x; v; "/k2! : (32)

Finally, we introduce norms in space and velocity as follows,

k f .t; "; "; "/k2+ WD
Z

Q
k f .t; x; v; "/k2! dx dv; t # 0; (33)

k f .t; "; "; "/k2
+ k WD

Z

Q
k f .t; x; v; "/k2Hk dx dv; t # 0; (34)

whereQ D Œ0; 1"& Œ!1; 1" denotes the domain in the phase space. For simplicity, we
will suppress the dependence of t and just use k fk+ , k fk+ k in the following proof.

An important property of L is its coercivity, given in (7), based on which the
following results were established in [47].
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Theorem 1 (Uniform Regularity) If for some integer m # 0,

kDk!.z/kL1 $ C! ; kDkf0k+ $ C0; k D 0; : : : ;m; (35)

then the solution f to the linear transport equation (1)–(3), with !a D S D 0 and
periodic boundary condition in x, satisfies,

kDkfk+ $ C; k D 0; " " " ;m; 8t > 0; (36)

where C! , C0 and C are constants independent of ".
The above theorem shows that, under some smoothness assumption on ! , the

regularity of the initial data is preserved in time and the Sobolev norm of the solution
is bounded uniformly in ".

Theorem 2 ("2-Estimate on Œ f " ! f ) With all the assumptions in Theorem 1 and
furthermore, ! 2 Wk;1 D f! 2 L1.Œ0; 1" & Iz/jDj! 2 L1.Œ0; 1" & Iz/ for all j $
kg. For a given time T > 0, the following regularity result of Œ f " ! f holds:

kDk.Œ f " ! f /k2+ $ e!!mint=2"2kDk.Œ f0" ! f0/k2+ C C0"2 (37)

for any t 2 .0;T" and 0 $ k $ m;, where C0 and C are constants independent of ".
The first term on the right hand side of (37) is the behavior of the initial

layer, which is damped exponentially in t=". After the initial layer, the high order
derivatives in z of the difference between f and its local equilibrium Œ f " is of O."/.

3.2 The Semiconductor Boltzmann Equation

The results in the previous subsection can be extended to the (linear) semiconductor
Boltzmann equation by assuming $ D 0 in (10).

Introduce the Hilbert space of the velocity variable L2M WD L2
#
R dI dv

Ms.v/

$
, with

the corresponding inner product h"; "iL2M and norm jj"jjL2M . First, the collision operator
Qs has the following coercivity property for any f 2 L2M [69],

hQs. f /; f iL2M $ !!minjj f ! %Msjj2
L2M
; (38)

Introduce the following norms

jj f .t; "; "; "/jj2+ WD
Z

˝

Z

Rd

jj f jj2!
M.v/

dv dx;

jj f .t; "; "; "/jj2+ k WD
Z

˝

Z

Rd

jj f jj2Hk

M.v/
dv dx:
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We assume a periodic boundary condition in space. The following results were
proved in [59].

Theorem 3 (Uniform Regularity) Assume for some integer m # 0,

jjDk! jjL1.v;z/ $ C! ; jjDkf0jj+ $ C0; k D 0; " " " ;m;

then the solution f to (10) satisfies

jjDkf jj+ $ C; k D 0; " " " ;m; 8t > 0;

where C! , C0 and C are constants independent of ".

Theorem 4 (Estimate on f ! %Ms) With all the assumptions in Theorem 3, and in
addition,

Z

Rd

Z

Rd
.Dk!/v2Ms.v/Ms.w/ dwdv $ C;

ˇ̌
ˇ̌
Z

Rd
.Dk!/Ms.w/ dw

ˇ̌
ˇ̌ $ C; kDk.v " rxf0/k+ $ C;

for k D 1; " " " ;m, then

jjDk. f ! %Ms/jj2+ $ e!!mint=2"2 jjDk. f0 ! %0Ms
0/jj2+ C C0"2 $ C"2; (39)

for any t 2 .0;T" and 0 $ k $ m, where C0 and C are constants independent of ".
Differing from the isotropic scattering, for the anisotropic collision kernel, to

obtain the decay rate of f ! %Ms, an exponential decay estimate on v "rxf is needed
[59].

3.3 General Linear Kinetic Equations

While the previous analysis gave decay estimates on the deviation between f and its
local equilibrium, which can be difficult for more general kinetic equations, the use
of hypocoercivity to estimate the deviation of f from the global equilibrium which
is independent of t and x, helps one to deal with more general and even nonlinear
equations. For general linear transport equation with one conserved quantity:

@tf C
1

"
v " rx f C

1

"
rx$ " rvf D

1

ı"
Ql. f /; (40)

where the collisionQl includes

• BGK operatorQl D !.x; z/.˘ f ! f /, where ˘ is a projection operator onto the
local equilibrium;
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• Anisotropic scattering operator Ql D
R
Œ!.v ! v"; z/f .v"/ ! !.v" !

v; z/f .v/" dv"; ! > 0.

Two regimes will be considered: the high-field regime (ı D 1) and the parabolic
regime (ı D ").

In [57] the following regularity result was established:

Theorem 5 Let f be the solution to the kinetic equation (40), and assume the initial
data has sufficient regularity with respect to z: k@lzf0k $ Hl, then:

(1) k@lzfk $ ClŠminfe!)ztC.t/l; e.C!)z/t2l!1.1CH/lC1g, where C is a constant, C.t/
is an algebraic function of t, and )z > 0 is uniformly bounded below from zero;

(2) f is analytic with uniform convergence radius 1
2.1CH/ ;

(3) Both the exponential convergence in time and convergence radius are uniform
with respect to ".

The proof of the results is based on the hypocoercivity property for deterministic
equation [21], which gives the exponential decay in time, and a careful analysis of
"-independent decay rate.

3.4 The Vlasov-Poisson-Fokker-Planck System

We now discuss the (nonlinear) VPFP system (17)–(18). For simplicity, we only
consider x D x 2 .0; l/ and v D v 2 R in one dimension. Define the L2 space in the
measure of

d- D d-.x; v; z/ D !.z/ dx dv dz: (41)

With this measure, one has the correspondingHilbert space with the following inner
product and norms:

< f ; g >D
Z

˝

Z

R

Z

Iz
fg d-.x; v; z/; or; < %; j >D

Z

˝

Z

Iz
%j d-.x; z/;

(42)

with norm

k fk2 D< f ; f > :

In order to get the convergence rate of the solution to the global equilibrium,
define,

h D f !Mv

p
Mv

; ! D
Z

R
h
p
M dv; u D

Z

R
h v
p
M dv; (43)
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where h is the (microscopic) fluctuation around the equilibrium, ! is the (macro-
scopic) density fluctuation, and u is the (macroscopic) velocity fluctuation. Then the
microscopic quantity h satisfies,

"ı@thC ˇv@xh ! ı@x$@vhC ı
v

2
@x$hC ıv

p
M@x$ D L Fh; (44)

@2x$ D !!; (45)

while the macroscopic quantities ! and u satisfy

ı@t! C @xu D 0; (46)

"ı@tuC "@x! C "
Z
v2
p
M.1 !˘/@xhdv C ı@x$! C uC ı@x$ D 0 ; (47)

whereL F is the so-called linearized Fokker-Planck operator,

L Fh D 1p
Mv

F
'
Mv C

p
Mvh

(
D 1p

Mv
@v

#
Mv@v

#
hp
Mv

$$
: (48)

Introduce projections onto
p
Mv and v

p
Mv ,

˘1h D !
p
Mv; ˘2h D vu

p
Mv; ˘h D ˘1hC˘2h: (49)

Furthermore, we also define the following norms and energies,

• Norms:

– khk2L2.v/ D
R
R h2 dv;

– k fk2Hm D
Pm

lD0 k@lzfk2, k fk2H1.x;z/ D k fk2 C k@xfk2 C k@zfk2,
– khk2v D

R
.0;l/%R%Iz

.@vh/2C .1C jvj2/h2 d-.x; v; z/; khk2Hm
v
DPm

lD0 k@lzhk2v;
• Energy terms:

– Em
h D khk2Hm C k@xhk2Hm!1 ; Em

$ D k@x$k2Hm C k@2x$k2Hm!1 ;

• Dissipation terms:

– Dm
h D k.1 !˘/hk2Hm C k.1 !˘/@xhk2Hm!1 , Dm

$v D Em
$ v;

– Dm
u D kuk2Hm C k@xuk2Hm!1 ; Dm

! D k!k2Hm C k@x!k2Hm!1 :

To get the regularity of the solution in the Hilbert space, one usually uses energy
estimates. In order to balance the nonlinear term @x$@vf , and get a regularity
independent of the small parameter " (or depending on " in a good way), one
needs the hypocoercivity property from the collision operator. The hypocoercivity
property one uses most commonly is

! hL Fh; hi # Ck.1 !˘1/hk2; (50)
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see [21, 76]. However, this is not enough for the non-linear case. We need the
following stronger hypocoercivity (see [22]):

Proposition 1 ForL F defined in (48),

(a) !hL Fh; hi D !hL.1 !˘/h; .1!˘/hi C kuk2;
(b) !hL F.1!˘/h; .1!˘/hi D k@v.1!˘/hk2C 1

4
kv.1!˘/hk2! 1

2
k.1!˘/hk2;

(c) !hL F.1 !˘/h; .1!˘/hi # k.1 !˘/hk2;
(d) There exists a constant )0 > 0, such that the following hypocoercivity holds,

! hL Fh; hi # ł0k.1 !˘/hk2v C kuk2; (51)

and the largest )0 D 1
7
in one dimension.

The following results were obtained in [43].

Theorem 6 For the high field regime (ı D 1), if

Em
h .0/C

1

"2
Em
$ .0/ $ C0 ; (52)

then,

Em
h .t/ $

3

)0
e! t

"2

#
Em
h .0/C

1

"2
Em
$ .0/

$
; Em

$ .t/ $
3

)0
e!t

'
"2Em

h .0/C Em
$ .0/

(
I

(53)

For the parabolic regime (ı D "), if

Em
h .0/C

1

"
Em
$ .0/ $

C0
"
; (54)

then,

Em
h .t/ $

3

)0
e! t

"

#
Em
h .0/C

1

"
Em
$ .0/

$
; Em

$ .t/ $
3

)0
e!t

'
"Em

h .0/C Em
$ .0/

(
:

(55)
Here C0 D 2)30=.80AC1/

2;B D 48
p
m
'
m
Œm=2"

(
is a constant only depending on m,

Œm=2" is the smallest integer larger or equal to m
2
, and C1 is the Sobolev constant in

one dimension, and m # 1.
These results show that the solution will converge to the global MaxwellianMv .

Since Mv is independent of z, one sees that the impact of the randomness dies out
exponentially in time, in both asymptotic regimes.
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The above theorem also leads to the following regularity result for the solution
to VPFP system:

Theorem 7 Under the same condition given in Theorem 6, for x 2 Œ0; l", one has

k f .t/k2Hm
z
$ 3
)0

Em.0/C 2l2; (56)

where Em.0/ D Em
h .0/C 1

"2
Em
$ .

This Theorem shows that the regularity of the initial data in the random space is
preserved in time. Furthermore, the bound of the Sobolev norm of the solution is
independent of the small parameter ".

3.5 The Classical Nonlinear Boltzmann Equation

In this subsection, we consider the spatially homogeneous classical Boltzmann
equation

@tf D Qb. f ; f / (57)

subject to random initial data and random collision kernel

f .0; v; z/ D f 0.v; z/; B D B.v; v"; *; z/; z 2 Iz:

We define the norms and operators:

k f .t; "; z/kLpv D
#Z

Rd
j f .t; v; z/jp dv

$1=p
; k f .t; v; "/kL2zD

#Z

Iz
f .t; v; z/2(.z/dz

$1=2
;

kj f .t; "; "/kjk D sup
z2Iz

 
kX

lD0
k@lzf .t; v; z/k2L2v

!1=2
:

Qb.g; h/.v/ D
Z

Rd

Z

Sd!1
B.v; v"; *; z/

%
g.v0/h.v0"/ ! g.v/h.v"/

&
d* dv";

Qb
1.g; h/.v/ D

Z

Rd

Z

Sd!1
@zB.v; v"; *; z/

%
g.v0/h.v0"/! g.v/h.v"/

&
d* dv":

The regularity, studied in [34], relies on the following estimates of Qb.g; h/
and Qb

1.g; h/, which are standard results in the deterministic case [10, 58] and
straightforward extension to the uncertain case:
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Lemma 1 Assume the collision kernel B depends on z linearly, B and @zB are
locally integrable and bounded in z. If g; h 2 L1v \ L2v, then

kQb.g; h/kL2v ; kQ
b
1.g; h/kL2v $ CBkgkL1vkhkL2v ; (58)

kQb.g; h/kL2v ; kQ
b
1.g; h/kL2v $ CBkgkL2vkhkL2v ; (59)

where the constant CB > 0 depends only on B and @zB.
We state the following theorem proved in [34].

Theorem 8 Assume that B satisfies the assumption in Lemma 1, and supz2Iz k f 0kL1v
$ M, kj f 0kjk < 1 for some integer k # 0. Then there exists a constant Ck > 0,
depending only on CB, M, T, and kj f 0kjk such that

kj fkjk $ Ck; for any t 2 Œ0;T" : (60)

This result shows that, even for the nonlinear Boltzmann equation, the regularity
of the initial data is preserved in time in the random space.

This result can be easily generalized to the full Boltzmann equation (23) with
periodic or vanishing boundary condition in space, we omit the detail. Linear
dependence of the collision kernel on the random variable can also be relaxed. See
[34] for a general proof.

One should notice that if one considers the Euler regime (by putting an "!1 in
front ofQb, then Ck in (60) will depend on the reciprocal of ", in addition to being a
large k-dependent constant (which is already the case for the deterministic problem
[24]). This estimate breaks down in the Euler limit when "! 0.

4 Generalized Polynomial Chaos Based Stochastic Galerkin
(gPC-sG) Methods for Random Kinetic Equations

In the last two decades, a large variety of numerical methods have been developed
in the field of uncertainty quantification (UQ) [27, 32, 55, 77]. Among these meth-
ods, the most popular ones are Monte-Carlo methods [64], stochastic collocation
methods [4, 5, 78] and stochastic Galerkin methods [3, 5]. The idea of Monte-Carlo
methods is to sample randomly in the random space, which results in halfth order
convergence. Stochastic collocation methods use sample points on a well-designed
grid, and one can evaluate the statistical moments by numerical quadratures.
Stochastic Galerkin methods start from an orthonormal basis in the random space,
and approximate functions by truncated polynomial chaos expansions. By the
Galerkin projection, a deterministic system of the expansion coefficients can be
obtained. While Monte-Carlo methods have advantage in very high dimensional
random space, the other two methods can achieve spectral accuracy if one adopts
the generalized polynomial chaos (gPC) basis [79], which is a great advantage if
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the dimension of the random space is not too high. In this paper we focus on low
dimensional random space, and adopt the stochastic Galerkin (sG) approach.

In the gPC expansion, one approximates the solution of a stochastic problem via
an orthogonal polynomial series [79] by seeking an expansion in the following form:

f .t; x ; v; z/ '
MX

jkjD0
fk.t; x ; v/˚k.z/ WD fM.t; x ; v; z/; (61)

where k D .k1; : : : ; kn/ is a multi-index with jkj D k1 C " " "C kn. f˚k.z/g are from
Pn
M, the set of all n-variate polynomials of degree up to M and satisfy

< ˚k; ˚j >!D
Z

Iz
˚k.z/˚j.z/!.z/ dz D ıkj; 0 $ jkj; jjj $ M:

Here ıkj is the Kronecker delta function. The orthogonality with respect to !.z/,
the probability density function of z, then defines the orthogonal polynomials. For
example, the Gaussian distribution defines the Hermite polynomials; the uniform
distribution defines the Legendre polynomials, etc. Note that when the random
dimension n > 1, an ordering scheme for multiple index can be used to re-order
the polynomials f˚k.z/; 0 $ jkj $ Mg into a single index f˚k.z/; 1 $ k $ NM D
dim.Pn

M/ D
!MCn

M

"
g. Typically, the graded lexicographic order is used, see, for

example, Section 5.2 of [77].
Now inserting (61) into a general kinetic equation

8
<

:

@tf C v " rx f Crx $ " rvf D Q. f /; t > 0; x 2 ˝; v 2 R d; z 2 Iz;
f .0; x ; v/ D f 0.x ; v/; x 2 ˝; v 2 R d; z 2 Iz;
f .t; x ; v/ D g.t; x ; v/; t # 0; x 2 @˝; v 2 R d; z 2 Iz:

(62)

Upon a standard Galerkin projection, one obtains for each 0 $ jkj $ M,

8
ˆ̂̂
<̂

ˆ̂̂
:̂

@tfk C v " rx fk C
MX

jjjD0
rx $kj " rvfj D Qk. fM/; t > 0; x 2 ˝; v 2 R d;

fk.0; x ; v/ D f 0k .x ; v/; x 2 ˝; v 2 R d;

fk.t; x ; v/ D gk.t; x ; v/; t # 0; x 2 @˝; v 2 R d;

(63)

with

Qk. fM/WD
Z

Iz
Q. fM/.t; x ; v; z/˚k.z/!.z/ dz; $kjWD

Z

Iz
$.t; x ; z/˚k.z/˚j.z/!.z/ dz;

f 0k WD
Z

Iz
f 0.x ; v; z/˚k.z/!.z/ dz; gk WD

Z

Iz
g.t; x ; v; z/˚k.z/!.z/ dz:
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Here the collision operatorQ. fM/ could be either linear or nonlinear depending on
the specific problem.We also assume that the potential $.t; x ; z/ is given a priori for
simplicity (the case that it is coupled to a Poisson equation can be treated similarly).

Therefore, one has a system of deterministic equations to solve and the unknowns
are gPC coefficients fk, which are independent of z. Mostly importantly, the resulting
gPC-sG system is just a vector analogue of its deterministic counterpart, thus
allowing straightforward extension of the existing deterministic kinetic solvers (of
course special attention is needed for the collision operator which will be discussed
later). Once the coefficients fk are obtained through some numerical procedure, the
statistical information such as the mean, covariance, standard deviation of the true
solution f can be approximated as

EŒ f " ' f0; VarŒ f " '
MX

jkjD1
f 2k ; CovŒ f " '

MX

jij;jjjD1
fifj:

4.1 Property of the Collision Operator Under the gPC-sG
Approximation

Due to the truncated approximation (61), the positivity of f is immediately lost.
Thus some properties such as the H-theorem no longer holds under the gPC-sG
approximation. Yet the conservation of the collision operator, for instance (26), is
still valid (whose proof does not require the positivity of f ). Normally these need to
be analyzed based on the specific collision operator. We give a simple example here
(see [40] for the proof).

Lemma 2 For the semiconductor Boltzmann collision operator (13) with random
scattering kernel ! D !.v; v"; z/, if its gPC-sG approximation Qs

k D 0 for every
0 $ jkj $ M, then it admits a unique solution fk D %kMs.v/, 0 $ jkj $ M, where
%k WD

R
Rd fk dv.

This lemma is just a vector analogue of the property (15).

4.2 An Efficient Treatment of the Boltzmann Collision
Operator Under the gPC-sG Approximation

As mentioned previously, numerical discretization of the gPC-sG system (63) for
most kinetic equations does not present essential difficulties. In principle, any time
and spatial discretization used for the deterministic, scalar kinetic equations can
be generalized easily to the vectorized form. However, this is not the case for the
collision operator, especially when it is nonlinear. To illustrate the idea, we use the
classical Boltzmann collision operator as an example.
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Under the gPC-sG approximation, the kth-mode of the classical Boltzmann
collision operator (24) is given by

Qb
k.t; x ; v/ D

Z

Iz
Qb. fM; fM/.t; x ; v; z/˚k.z/!.z/ dz

D
MX

jij;jjjD0
Skij

Z

Rd

Z

Sd!1
jv ! v"j)

%
fi.v0/fj.v0"/ ! fi.v/fj.v"/

&
d*dv";

(64)

with

Skij WD
Z

Iz
b).z/˚k.z/˚i.z/˚j.z/!.z/ dz; (65)

where we assumed that the collision kernel takes the form (25) with uncertainty in
b).

Note that the tensor Skij does not depend on the solution fk, so it can be
precomputed and stored for repeated use. But even so, the evaluation of Qb

k still
presents a challenge. A naive, direct computation for each t, x , and k would result in
O.N2MN

d!1
* N2dv / complexity, where NM D

!MCn
M

"
is the dimension of Pn

M, N* is the
number of discrete points in each angular direction, and Nv is the number of points
in each velocity dimension. This is, if not impossible, prohibitively expensive.

In [34], we constructed a fast algorithm for evaluating (64). It was shown that
the above direct cost O.N2MN

d!1
* N2dv / can be reduced to maxfO.RkNd!1

* Nd
v logNv/;

O.RkNMNd
v /g with Rk $ NM by leveraging the singular value decomposition (SVD)

and the fast spectral method for the deterministic collision operator [62]. This is
achieved in two steps.

First, for each fixed k, decompose the symmetric matrix .Skij/NM%NM as (via a
truncated SVD with desired accuracy)

Skij D
RkX

rD1
Uk

irV
k
rj:

Substituting it into (64) and rearranging terms, one gets

Qb
k.v/ D

RkX

rD1

Z

Rd

Z

Sd!1
jv ! v"j)

%
gkr .v

0/hkr .v
0
"/! gkr .v/h

k
r .v"/

&
d*dv"; (66)

with

gkr .v/ WD
MX

jijD0
Uk

irfi.v/; hkr .v/ WD
MX

jijD0
Vk
rifi.v/:
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Hence one readily reduce the cost from O.N2MN
d!1
* N2dv / to maxfO.RkNd!1

* N2dv /;
O.RkNMNd

v /g, where Rk $ NM is the numerical rank of matrix .Skij/NM%NM .
Next, note that (66) can be formally written as

Qb
k.v/ D

RkX

rD1
Qb.gkr ; h

k
r /; (67)

andQb is the deterministic collision operator (24) with kernelBDjv!v"j). In [62], a
fast Fourier-spectral method in velocity variable vwas developed for (24) in the case
of 2D Maxwell molecule () D 0) and 3D hard-sphere molecule () D 1). Applying
this method to (67) with slight modification, one can further reduce the cost from
maxfO.RkNd!1

* N2dv /;O.RkNMNd
v /g to maxfO.RkNd!1

* Nd
v logNv/;O.RkNMNd

v /g, see
appendix of [34] for a detailed description (in practice, typically N* ( Nv [23, 25]).

The above method has been extended to the Fokker-Planck-Landau collision
operator in [36].When the random variable is in high dimension, the problem suffers
from the dimension curse. A wavelet based sparse grid method was introduced in
[70], in which the matrix .Skij/NM%NM is very sparse, and the computational cost can
be significantly reduced.

4.3 A Spectral Accuracy Analysis

The regularity results presented previously can be used to establish the spectral
convergence of the gPC-sG method. As in Sect. 3.5, we will restrict to the spatially
homogeneous Boltzmann equation (57).

Using the orthonormal basis f˚k.z/g, the solution f to (57) can be represented as

f .t; v; z/ D
1X

kD0
Ofk.t; v/˚k.z/; where Ofk.t; v/ D

Z

Iz
f .t; v; z/˚k.z/!.z/ dz :

(68)

Let PM be the projection operator defined as

PMf .t; v; z/ D
MX

kD0
Ofk.t; v/˚k.z/:

Define the norms

k f .t; v; "/kHk
z
D
 

kX

lD0
k@lzf .t; v; z/k2L2z

!1=2
;

k f .t; "; "/kL2v;z D
#Z

Iz

Z

Rd
f .t; v; z/2 dv!.z/ dz

$1=2
; (69)

then one has the following projection error.



Uncertainty Quantification for Kinetic Equations 215

Lemma 3 Assume z obeys uniform distribution, i.e., z 2 Iz D Œ!1; 1" and !.z/ D
1=2 (so ˚k.z/ are Legendre polynomials). If kj f 0kjm is bounded, then

k f ! PMfkL2v;z $
C
Mm

; (70)

where C is a constant.
Given the gPC approximation of f :

fM.t; v; z/ D
MX

kD0
fk.t; x ; v/˚k.z/; (71)

define the error function

eM.t; v; z/ D PMf .t; v; z/ ! fM.t; v; z/ WD
MX

kD0
ek.t; v/˚k.z/;

where ek D Ofk ! fk. Then we have

Theorem 9 ([34]) Assume the random variable z and initial data f 0 satisfy the
assumption in Lemma 3, and the gPC approximation fM is uniformly bounded in
M, then

k f ! fMkL2v;z $ C.t/
)
1

Mm
C keM.0/kL2v;z

*
;

where C is a constant depending on t.

Remark 1 Clearly for spectral accuracy, one needs keM.0/kL2v;z $ C=Mm. In

practice, one chooses fk.0; v/ D Ofk.0; v/, for all k D 0; " " " ;M, then eM.0/ D 0.

4.4 Numerical Examples

We now show two typical examples of the kinetic equations subject to random
inputs. The first one is the classical Boltzmann equation with random boundary
condition and the second one is the semiconductor Boltzmann equation with random
force field. For simplicity, we assume the random variable z is one-dimensional and
obeys uniform distribution.

Example 1 Consider the classical Boltzmann equation (23) with the following
boundary condition: the gas is initially in a constant state

f 0.x; v/ D 1

2(T0
e! v2

2T0 ; T0 D 1; x 2 Œ0; 1":
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At time t D 0, suddenly increase the wall temperature at left boundary by a factor
of 2 with a small random perturbation:

Tw.z/ D 2.T0 C sz/; s D 0:2:

The purely diffusive Maxwell boundary condition is assumed at x D 0. For other
implementation details, see [34].

The deterministic version of this problem has been considered by many authors
[1, 23, 26], where they all observed that with the sudden rise of wall temperature, the
gas close to the wall is heated and accordingly the pressure there rises sharply, which
pushes the gas away from the wall and a shock wave propagates into the domain.
The mean of our solution also exhibits a similar behavior, see Fig. 1. Meanwhile,
the standard deviation of the solution allows us to predict the propagation of
uncertainties quantitatively.

Example 2 Consider the semiconductor Boltzmann equation (10) coupled with a
Poisson equation:

ˇ.z/@xx$ D % ! h.x; z/; $.0/ D 0; $.1/ D 5; x 2 Œ0; 1";
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Fig. 1 Example 1. Left column: mean of density, bulk velocity (first component), and temperature.
Right column: standard deviation of density, bulk velocity (first component), and temperature.
Solid line: stochastic collocation with Nz D 20, Nv D 64, N* D 8, Nx D 200. Other legends are
the 7-th order gPC-sG solutions at different time with Nv D 32, N* D 4, Nx D 100
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Fig. 2 Example 2. First row: mean and variance of %. Second row: mean of velocity u and potential
$. Time t D 0:05, 'x D 0:01, 't D 10!5 , " D 0:001. Star: 4-th order gPC-sG solutions. Solid
line: the reference solutions obtained by stochastic collocation

where we assume the scaled Debye length ˇ.z/ and the doping profile h.x; z/ are
subject to uncertainty:

ˇ.z/ D 0:002.1C 0:2z/;

c.x; z/ D
#
1 ! .1 ! s0/%.0; t D 0/

h
tanh

'x ! x1
s

(
! tanh

'x ! x2
s

(i$
.1C 0:5z/;

with s D 0:02, s0 D .1 ! 0:001/=2, x1 D 0:3, x2 D 0:7. For other implementation
details, see [40].

The 4-th order gPC solutions and the reference solutions obtained by stochastic
collocation are shown in Fig. 2, and they are in good agreement.
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5 Stochastic Asymptotic-Preserving (sAP) Schemes for
Random Kinetic Equations in Diffusive Scalings

Kinetic equations often have scaling parameters (such as the Knudsen number ")
that asymptotically lead kinetic equations to their hydrodynamic or diffusion limit
equations. When " is small, numerically solving the kinetic equations is challenging
since time and spatial discretizations need to resolve ". Asymptotic-preserving (AP)
schemes are those that mimic the asymptotic transitions from kinetic equations
to their hydrodynamic/diffusion limits in the discrete setting [35, 37, 38, 53, 54].
Starting from the mid-1990s, the development of AP schemes for such problems
has generated many interests, see, for example, [29, 30, 39, 44, 45, 49, 56]. The AP
strategy has been proved to be a powerful and robust technique to address multiscale
problems in many kinetic problems. The main advantage of AP schemes is that they
are very efficient even when " is small, since they do not need to resolve the small
scales numerically, and yet can still capture the macroscopic behavior governed
by the limiting macroscopic equations. Indeed, it was proved, in the case of linear
transport with a diffusive scaling, an AP scheme converges uniformly with respect
to the scaling parameter [29]. This is expected to be true for all AP schemes [38],
although specific proofs are needed for specific problems. AP schemes avoid the
difficulty of coupling a microscopic solver with a macroscopic one, as the micro
solver automatically becomes a macro solver as "! 0.

Here we are interested in the scenario when the uncertainty (random inputs)
and small scaling both present in a kinetic equation. Since the sG method makes
the random kinetic equations into deterministic systems which are vector analogue
of the original scalar deterministic kinetic equations, one can naturally utilize the
deterministic AP machinery to solve the sG system to achieve the desired AP goals.
To this aim, the notion of stochastic asymptotic preserving (sAP) was introduced in
[46]. A scheme is sAP if a sG method for the random kinetic equation becomes a sG
approximation for the limiting macroscopic, random (hydrodynamic or diffusion)
equation as " ! 0, with highest gPC degree, mesh size and time step all held
fixed. Such schemes guarantee that even for " ! 0, all numerical parameters,
including the number of gPC modes, can be chosen only for accuracy requirement
and independent of ".

Next we use the linear transport equation (1) as an example to derive a
sAP scheme. It has the merit that rigorous convergence and sAP theory can be
established, see [47].

5.1 A sAP-sG Method for the Linear Transport Equation

We assume the complete orthogonal polynomial basis in the Hilbert space
H.IzI!.z/ dz/ corresponding to the weight !.z/ is f$i.z/; i D 0; 1; " " " ; g, where
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$i.z/ is a polynomial of degree i and satisfies the orthonormal condition:

h$i;$ji! D
Z
$i.z/$j.z/!.z/ dz D ıij:

Here $0.z/ D 1, and ıij is the Kronecker delta function. Since the solution f .t; "; "; "/
is defined in L2

!
Œ0; 1" & Œ!1; 1" & IzI d-/, one has the gPC expansion

f .t; x; v; z/ D
1X

iD0
fi.t; x; v/$i.z/; Of D

!
fi
"1
iD0 WD

!Nf ; Of1
"
:

The mean and variance of f can be obtained from the expansion coefficients as

Nf D E. f / D
Z

Iz
f!.z/ dz D f0; var . f / D jOf1j2 :

Denote the sG solution by

fM D
MX

iD0
fi $i; Of M D

!
fi
"M
iD0 WD

!Nf ; Of M1
"
; (72)

from which one can extract the mean and variance of fM from the expansion
coefficients as

E. fM/ D Nf ; var . fM/ D jOf M1 j2 $ var . f / :

Furthermore, we define

!ij D
˝
$i; !$j

˛
!
; ˙ D

!
!ij
"
MC1;MC1;

!a
ij D

˝
$i; !

a$j
˛
!
; ˙a D

!
!a
ij

"
MC1;MC1;

for 0 $ i; j $ M. Let Id be the .M C 1/ & .M C 1/ identity matrix. ˙;˙a are
symmetric positive-definite matrices satisfying [77]

˙ # !min Id :

If one applies the gPC ansatz (72) into the transport equation (1), and conduct
the Galerkin projection, one obtains

"@t Of C v@x Of D !
1

"
.I ! Œ""/˙ Of ! "˙aOf ! OS; (73)

where OS is defined similarly as (72).
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We now use the micro-macro decomposition [56]:

Of .t; x; v; z/ D O%.t; x; z/C "Og.t; x; v; z/; (74)

where O% D ŒOf " and ŒOg" D 0, in (73) to get

@t O%C @x Œv Og" D !˙a O%C OS; (75a)

@t OgC
1

"
.I ! Œ:"/.v@x Og/ D !

1

"2
˙ Og !˙a Og ! 1

"2
v@x O%; (75b)

with initial data

O%.0; x; z/ D O%0.x; z/; Og.0; x; v; z/ D Og0.x; v; z/ :

It is easy to see that system (75) formally has the diffusion limit as "! 0:

@t O% D @x.K@x O%/!˙a O%C OS ; (76)

where

K D 1

3
˙!1 : (77)

This is the sG approximation to the random diffusion equation (8)–(9). Thus the
gPC approximation is sAP in the sense of [46].

One can easily derive the following energy estimate for system (75)

Z 1

0

O%.t; x/2 dxC "2

2

Z 1

0

Z 1

!1
Og.t; x; v/2 dv dx

$
Z 1

0

O%.0; x/2 dxC "2

2

Z 1

0

Z 1

!1
Og.0; x; v/2 dv dx :

Let f be the solution to the linear transport equation (1)–(2). Use the Mth order
projection operator PM , the error arisen from the gPC-sG can be split into two parts
rN and eN ,

f ! fM D f ! PMf C PMf ! fM WD rM C eM; (78)

where rM D f ! PMf is the truncation error, and eM D PMf ! fM is the projection
error.

Here we summarize the results of [47].

Lemma 4 (Truncation Error) Under all the assumption in Theorems 1 and 2, we
have for t 2 .0;T" and any integer k D 0; : : : ;m,

krMk+ $
C1
Mk
: (79)
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Moreover,

++ ŒrM" ! rM
++
+
$ C2

Mk
"; (80)

where C1 and C2 are independent of ".

Lemma 5 (Projection Error) Under all the assumptions in Theorems 1 and 2, we
have for t 2 .0;T" and any integer k D 0; : : : ;m,

keMk+ $
C.T/
Mk

; (81)

where C.T/ is a constant independent of ".
Combining the above lemmas gives the uniform (in ") convergence theorem:

Theorem 10 If for some integer m # 0,

k!.z/kHk $ C! ; kDkf0k+ $ C0; kDk.@xf0/k+ $ Cx; k D 0; : : : ;m; (82)

then the error of the sG method is

k f ! fMk+ $
C.T/
Mk

; (83)

where C.T/ is a constant independent of ".
Theorem 10 gives a uniformly in " spectral convergence rate, thus one can choose

M independent of ", a very strong sAP property. Such a result is also obtained
with the anisotropic scattering case, for the linear semiconductor Boltzmann
equation (10) [59].

5.2 A Full Discretization

As pointed out in [46], and also seen in Sect. 4, by using the gPC-sG formulation,
one obtains a vector version of the original deterministic transport equation. This
enables one to use the deterministic AP methodology. In this paper, we adopt the
micro-macro decomposition based AP scheme developed in [56] for the gPC-sG
system (75).

We take a uniform grid xi D ih; i D 0; 1; " " "N, where h D 1=N is the grid size,
and time steps tn D n't. %ni is the approximation of % at the grid point .xi; tn/ while
gnC1
iC 1

2

is defined at a staggered grid xiC1=2 D .iC 1=2/h, i D 0; " " "N ! 1.
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The fully discrete scheme for the gPC system (75) is

O%nC1i ! O%ni
't

C

2

4v
OgnC1
iC 1

2

! OgnC1
i! 1

2

'x

3

5 D !˙a
i O%nC1i C OSi; (84a)

OgnC1
iC 1

2

! Ogn
iC 1

2

't
C 1

"'x
.I ! Œ:"/

'
vC.Ogn

iC 1
2

! Ogn
i! 1

2

/C v!.Ogn
iC 3

2

! Ogn
iC 1

2

/
(

(84b)

D ! 1
"2
˙i OgnC1iC 1

2

!˙a OgnC1
iC 1

2

! 1

"2
v
O%niC1 ! O%ni
'x

:

It has the formal diffusion limit when "! 0 given by

O%nC1i ! O%ni
't

! K
O%niC1 ! 2 O%ni C O%ni!1

'x2
D !˙a

i O%nC1i C OSi; (85)

where K D 1
3
˙!1. This is the fully discrete sG scheme for (76). Thus the fully

discrete scheme is sAP.
One important property for an AP scheme is to have a stability condition

independent of ", so one can take 't) O."/. The next theorem from [47] answers
this question.

Theorem 11 Assume !a D S D 0. If 't satisfies the following CFL condition

't $ !min

3
'x2 C 2"

3
'x; (86)

then the sequences O%n and Ogn defined by scheme (84) satisfy the energy estimate

'x
N!1X

iD0

#!
O%ni
"2 C "2

2

Z 1

!1

'
Ogn
iC 1

2

(2
dv
$
$ 'x

N!1X

iD0

#!
O%0i
"2 C "2

2

Z 1

!1

'
Og0
iC 1

2

(2
dv
$

for every n, and hence the scheme (84) is stable.
Since the right hand side of (86) has a lower bound when " ! 0 (and the lower

bound being that of a stability condition of the discrete diffusion equation (85)), the
scheme is asymptotically stable and't remains finite even if "! 0.

A discontinuous Galerkin method based sAP scheme for the same problem was
developed in [17], where uniform stability and rigorous sAP property were also
proven.

5.3 Numerical Examples

We now show one example from [47] to illustrate the sAP properties of the scheme.
For simplicity, we again assume the random variable z is one-dimensional and obeys
uniform distribution.
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Example 3 Consider the linear transport equation (1) with !a D S D 0 and random
coefficient

!.z/ D 2C z;

subject to zero initial condition f .0; x; v; z/ D 0 and boundary condition

f .t; 0; v; z/ D 1; v # 0I f .t; 1; v; z/ D 0; v $ 0:

When "! 0, the limiting random diffusion equation is

@t% D
1

3!.z/
@xx% ; (87)

with initial and boundary conditions:

%.0; x; z/ D 0; %.t; 0; z/ D 1; %.t; 1; z/ D 0:

The analytical solution for (87) with the given initial and boundary conditions is

%.t; x; z/ D 1! erf

0

BBBB@
x

s
4

3!.z/
t

1

CCCCA
: (88)

When " is small, we use this as the reference solution, as it is accurate with an error
of O."2/. For other implementation details, see [47].

In Fig. 3, we plot the errors in mean and standard deviation of the gPC numerical
solutions at t D 0:01with different gPC ordersM. Three sets of results are included:
solutions with 'x D 0:04 (squares), 'x D 0:02 (circles), 'x D 0:01 (stars). We
always use 't D 0:0002=3. One observes that the errors become smaller with
finer mesh. One can see that the solutions decay rapidly in M and then saturate
where spatial discretization error dominates. It is then obvious that the errors due
to gPC expansion can be neglected at order M D 4 even for " D 10!8. From this
simple example, we can see that using the properly designed sAP scheme, the time,
spatial, and random domain discretizations can be chosen independently of the small
parameter ".

In Fig. 4, we examine the difference between the solution at t D 0:01 obtained
by the 4th-order gPC method with 'x D 0:01, 't D 'x2=12 and the limiting
analytical solution (88). As expected, we observe the differences become smaller as
" is smaller in a quadratic fashion, before the numerical errors become dominant.
This, on the other hand, shows the sAP scheme works uniformly for different ".
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Fig. 3 Example 3. Errors of the mean (solid line) and standard deviation (dash line) of % with
respect to the gPC order M at " D 10!8: 'x D 0:04 (squares), 'x D 0:02 (circles), 'x D 0:01
(stars). 't D 0:0002=3

Fig. 4 Example 3. Differences in the mean (solid line) and standard deviation (dash line) of %
with respect to "2, between the limiting analytical solution (88) and the 4th-order gPC solution
with'x D 0:04 (squares), 'x D 0:02 (circles) and 'x D 0:01 (stars)

6 Conclusion and Open Problems

Using the classical Boltzmann equation, linear Boltzmann equations and Vlasov-
Poisson-Fokker-Planck system as prototype examples, we have surveyed recent
development of uncertainty quantification (UQ) for kinetic equations. The
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uncertainties for such equations typically come from collision/scattering kernels,
boundary data, initial data, forcing terms, among others. We proved the regularity
in the random space and then adopted the generalized polynomial chaos based
stochastic Galerkin (gPC-sG) approach to handle the random inputs which could
yield spectral accuracy, under some regularity assumption on the initial data and
random coefficients. Various theoretical and computational issues with respect to
the collision operator were studied. When the kinetic equation has diffusive scaling
that asymptotically leads to a diffusion equation, we constructed the stochastic
Asymptotic-Preserving (sAP) scheme which allows numerical discretization
including the gPC order to be chosen independently of the small parameter, hence
is highly efficient in diffusive regime.

UQ for kinetic equations is a fairly recent research field, and many interesting
problems remain open. We list a few such problems here:

• Nonlinear kinetic equations. Although sG or sAP schemes have been introduced
for some nonlinear kinetic equations, for example the Boltzmann equation [34],
the Landau equation [36], the radiative heat transfer equations [41], disperse two-
phase kinetic-fluid model [42], rigorous analysis—such as regularity, long-time
and small " behavior, spectral convergence, etc.—has been lacking. In particular,
for the Boltzmann equation, the behavior of the sG scheme in the Euler regime
is not understood.

• High dimensional random space. When the dimension of the random parameter
z is moderate, sparse grids have been introduced [36, 70] using wavelet approx-
imations. Since wavelet basis does not have high order accuracy, it remains to
construct sparse grids with high (or spectral) order of accuracy in the random
space. When the random dimension is much higher, new methods need to be
introduced to reduce the dimension.

• Study of sampling based methods such as collocation and multi-level Monte-
Carlo methods. In practice, sampling based non-intrusive methods are attractive
since they are based on the deterministic, or legacy codes. So far there has
been no analysis done for the stochastic collocation methods for random kinetic
equations. Moreover, multi-level Monte-Carlo method could significantly reduce
the cost of sampling based methods [28]. Its application to kinetic equations with
uncertainty remains to be investigated.

Despite at its infancy, due to the good regularity and asymptotic behavior in the
random space for kinetic equations with uncertain random inputs, the UQ for kinetic
equations is a promising research direction that deserves more development in their
mathematical theory, efficient numerical methods, and applications.Moreover, since
the random parameters in uncertain kinetic equations share some properties of the
velocity variable for a kinetic equation, the ideas from kinetic theory can be very
useful for UQ [18], and vice versa, thus the marriage of the two fields can be very
fruitful.
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